-
Randomized Controlled Trial Clinical Trial
Purine metabolism and inhibition of xanthine oxidase in severely hypoxic neonates going onto extracorporeal membrane oxygenation.
- P J Marro, S Baumgart, M Delivoria-Papadopoulos, S Zirin, L Corcoran, S P McGaurn, L E Davis, and R R Clancy.
- Children's Hospital of Philadelphia, Pennsylvania, USA.
- Pediatr. Res. 1997 Apr 1; 41 (4 Pt 1): 513-20.
AbstractThe effect of allopurinol to inhibit purine metabolism via the xanthine oxidase pathway in neonates with severe, progressive hypoxemia during rescue and reperfusion with extracorporeal membrane oxygenation (ECMO) was examined. Twenty-five term infants meeting ECMO criteria were randomized in a double-blinded, placebo-controlled trial. Fourteen did not receive allopurinol, whereas 11 were treated with 10 mg/kg after meeting criteria and before cannulation, in addition to a 20-mg/kg priming dose to the ECMO circuit. Infant plasma samples before cannulation, and at 15, 30, 60, and 90 min, and 3, 6, 9, and 12 h on bypass were analyzed (HPLC) for allopurinol, oxypurinol, hypoxanthine, xanthine, and uric acid concentrations. Urine samples were similarly evaluated for purine excretion. Hypoxanthine concentrations in isolated blood-primed ECMO circuits were separately measured. Hypoxanthine, xanthine, and uric acid levels were similar in both groups before ECMO. Hypoxanthine was higher in allopurinol-treated infants during the time of bypass studied (p = 0.022). Xanthine was also elevated (p < 0.001), and uric acid was decreased (p = 0.005) in infants receiving allopurinol. Similarly, urinary elimination of xanthine increased (p < 0.001), and of uric acid decreased (p = 0.04) in treated infants. No allopurinol toxicity was observed. Hypoxanthine concentrations were significantly higher in isolated ECMO circuits and increased over time during bypass (p < 0.001). This study demonstrates that allopurinol given before cannulation for and during ECMO significantly inhibits purine degradation and uric acid production, and may reduce the production of oxygen free radicals during reoxygenation and reperfusion of hypoxic neonates recovered on bypass.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.