• Bioengineering (Basel) · Dec 2019

    Deep Encoder-Decoder Adversarial Reconstruction(DEAR) Network for 3D CT from Few-View Data.

    • Huidong Xie, Hongming Shan, and Ge Wang.
    • Biomedical Imaging Center, Department of Biomedical Engineering, Center for Biotechnology &Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, USA.
    • Bioengineering (Basel). 2019 Dec 9; 6 (4).

    AbstractX-ray computed tomography (CT) is widely used in clinical practice. The involved ionizingX-ray radiation, however, could increase cancer risk. Hence, the reduction of the radiation dosehas been an important topic in recent years. Few-view CT image reconstruction is one of the mainways to minimize radiation dose and potentially allow a stationary CT architecture. In this paper,we propose a deep encoder-decoder adversarial reconstruction (DEAR) network for 3D CT imagereconstruction from few-view data. Since the artifacts caused by few-view reconstruction appear in3D instead of 2D geometry, a 3D deep network has a great potential for improving the image qualityin a data driven fashion. More specifically, our proposed DEAR-3D network aims at reconstructing3D volume directly from clinical 3D spiral cone-beam image data. DEAR is validated on a publiclyavailable abdominal CT dataset prepared and authorized by Mayo Clinic. Compared with other2D deep learning methods, the proposed DEAR-3D network can utilize 3D information to producepromising reconstruction results.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…