• Eur Spine J · May 2012

    Three-dimensional kinematic analysis of the cervical spine after anterior cervical decompression and fusion at an adjacent level: a preliminary report.

    • Sadayoshi Watanabe, Nozomu Inoue, Tomonori Yamaguchi, Yoshitaka Hirano, Alejandro A Espinoza Orías, Shintaro Nishida, Yuichi Hirose, and Junichi Mizuno.
    • Center for Spine and Spinal Cord Disorders, Southern Tohoku General Hospital, 1-2-5 Satonomori, Iwanuma, Miyagi 989-2483, Japan.
    • Eur Spine J. 2012 May 1;21(5):946-55.

    PurposeDevelopment of adjacent segment degeneration following anterior cervical decompression and fusion (ACDF) is still controversial, as adjacent-level kinematics is poorly understood. This study reports preliminary data from a high-accuracy 3D analysis technique developed for in vivo cervical kinematics.MethodsFrom nine cervical spondylosis patients, four underwent single-level ACDF, and five underwent two-level ACDF using cylindrical titanium cage implant(s). Pre- and post-surgical CT scans were taken in flexion, neutral and extended positions, allowing us to compute segmental ranges of motion for rotation and translation, and 3D disc-height distributions. Differences in segmental motions and disc-height between fused and adjacent levels were analyzed with a Wilcoxon signed-rank test. Results are presented as mean ± SEM.ResultsThe flexion/extension angular-ROM at the fusion level decreased after surgery (7.46 ± 1.17° vs. 3.14 ± 0.56°, p < 0.003). The flexion/extension angular-ROM at one caudal adjacent level to the fusion level (3.97 ± 1.29°) tended to be greater post-operatively (6.11 ± 1.44°, p = 0.074). Translation in the anterior-posterior direction during flexion/extension at the fusion level decreased after surgery (1.22 ± 0.20 mm vs. 0.32 ± 0.11 mm, p < 0.01). No differences were found in adjacent-level disc heights between both study time-points.ConclusionsThis study showed increased segmental motion in flexion/extension angular-ROM at one level adjacent to ACDF. However, increases in the rotational angular-ROM were not statistically significant when cranial/caudal adjacent levels were analyzed separately. This preliminary study highlighted the capabilities of a 3D-kinematic analysis method to detect subtle changes in kinematics and disc height at the adjacent levels to ACDF. Thus, reliable evidence related to ACDF's influence on adjacent-level cervical kinematics can be collected.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.