• Chest · Sep 2021

    Utility of Circulating Tumor DNA in Identifying Somatic Mutations and Tracking Tumor Evolution in Patients with Non-small Cell Lung Cancer.

    • Moom R Roosan, Isa Mambetsariev, Rebecca Pharaon, Jeremy Fricke, Hatim Husain, Karen L Reckamp, Marianna Koczywas, Erminia Massarelli, Andrea H Bild, and Ravi Salgia.
    • Chapman University School of Pharmacy, Irvine, CA.
    • Chest. 2021 Sep 1; 160 (3): 109511071095-1107.

    BackgroundThe usefulness of circulating tumor DNA (ctDNA) in detecting mutations and monitoring treatment response has not been well studied beyond a few actionable biomarkers in non-small cell lung cancer (NSCLC).Research QuestionHow does the usefulness of ctDNA analysis compare with that of solid tumor biopsy analysis in patients with NSCLC?MethodsWe retrospectively evaluated 370 adult patients with NSCLC treated at the City of Hope between November 2015 and August 2019 to assess the usefulness of ctDNA in mutation identification, survival, concordance with matched tissue samples in 32 genes, and tumor evolution.ResultsA total of 1,688 somatic mutations were detected in 473 ctDNA samples from 370 patients with NSCLC. Of the 473 samples, 177 showed at least one actionable mutation with currently available Food and Drug Administration-approved NSCLC therapies. MET and CDK6 amplifications co-occurred with BRAF amplifications (false discovery rate [FDR], < 0.01), and gene-level mutations were mutually exclusive in KRAS and EGFR (FDR, 0.0009). Low cumulative percent ctDNA levels were associated with longer progression-free survival (hazard ratio [HR], 0.56; 95% CI, 0.37-0.85; P = .006). Overall survival was shorter in patients harboring BRAF mutations (HR, 2.35; 95% CI, 1.24-4.6; P = .009), PIK3CA mutations (HR, 2.77; 95% CI, 1.56-4.9; P < .001) and KRAS mutations (HR, 2.32; 95% CI, 1.30-4.1; P = .004). Gene-level concordance was 93.8%, whereas the positive concordance rate was 41.6%. More mutations in targetable genes were found in ctDNA than in tissue biopsy samples. Treatment response and tumor evolution over time were detected in repeated ctDNA samples.InterpretationAlthough ctDNA analysis exhibited similar usefulness to tissue biopsy analysis, more mutations in targetable genes were missed in tissue biopsy analyses. Therefore, the evaluation of ctDNA in conjunction with tissue biopsy samples may help to detect additional targetable mutations to improve clinical outcomes in advanced NSCLC.Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…