• World Neurosurg · Jul 2021

    Multicenter Study

    Machine Learning-Based Multi-parametric MRI Radiomics for prediction of H3 K27M Mutation in Midline Gliomas.

    • Sedat Giray Kandemirli, Burak Kocak, Shotaro Naganawa, Kerem Ozturk, Stephen S F Yip, Saurav Chopra, Luciano Rivetti, Amro Saad Aldine, Karra Jones, Zuzan Cayci, Toshio Moritani, and Takashi Shawn Sato.
    • Department of Radiology, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA. Electronic address: sedat-kandemirli@uiowa.edu.
    • World Neurosurg. 2021 Jul 1; 151: e78-e85.

    ObjectiveH3K27M mutation in gliomas has prognostic implications. Previous magnetic resonance imaging (MRI) studies have reported variable rates of tumoral enhancement, necrotic changes, and peritumoral edema in H3K27M-mutant gliomas, with no distinguishing imaging features compared with wild-type gliomas. We aimed to construct an MRI machine learning (ML)-based radiomic model to predict H3K27M mutation in midline gliomas.MethodsA total of 109 patients from 3 academic centers were included in this study. Fifty patients had H3K27M mutation and 59 were wild-type. Conventional MRI sequences (T1-weighted, T2-weighted, T2-fluid-attenuated inversion recovery, postcontrast T1-weighted, and apparent diffusion coefficient maps) were used for feature extraction. A total of 651 radiomic features per each sequence were extracted. Patients were randomly selected with a 7:3 ratio to create training (n = 76) and test (n = 33) data sets. An extreme gradient boosting algorithm (XGBoost) was used in ML-based model development. Performance of the model was assessed by area under the receiver operating characteristic curve.ResultsPediatric patients accounted for a larger proportion of the study cohort (60 pediatric [55%] vs. 49 adult [45%] patients). XGBoost with additional feature selection had an area under the receiver operating characteristic curve of 0.791 and 0.737 in the training and test data sets, respectively. The model achieved accuracy, precision (positive predictive value), recall (sensitivity), and F1 (harmonic mean of precision and recall) measures of 72.7%, 76.5%, 72.2%, and 74.3%, respectively, in the test set.ConclusionsOur multi-institutional study suggests that ML-based radiomic analysis of multiparametric MRI can be a promising noninvasive technique to predict H3K27M mutation status in midline gliomas.Copyright © 2021 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…