• Am. J. Epidemiol. · Dec 1995

    Review

    A critical look at methods for handling missing covariates in epidemiologic regression analyses.

    • S Greenland and W D Finkle.
    • Department of Epidemiology, UCLA School of Public Health, 90095-1772, USA.
    • Am. J. Epidemiol. 1995 Dec 15; 142 (12): 1255-64.

    AbstractEpidemiologic studies often encounter missing covariate values. While simple methods such as stratification on missing-data status, conditional-mean imputation, and complete-subject analysis are commonly employed for handling this problem, several studies have shown that these methods can be biased under reasonable circumstances. The authors review these results in the context of logistic regression and present simulation experiments showing the limitations of the methods. The method based on missing-data indicators can exhibit severe bias even when the data are missing completely at random, and regression (conditional-mean) imputation can be inordinately sensitive to model misspecification. Even complete-subject analysis can outperform these methods. More sophisticated methods, such as maximum likelihood, multiple imputation, and weighted estimating equations, have been given extensive attention in the statistics literature. While these methods are superior to simple methods, they are not commonly used in epidemiology, no doubt due to their complexity and the lack of packaged software to apply these methods. The authors contrast the results of multiple imputation to simple methods in the analysis of a case-control study of endometrial cancer, and they find a meaningful difference in results for age at menarche. In general, the authors recommend that epidemiologists avoid using the missing-indicator method and use more sophisticated methods whenever a large proportion of data are missing.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.