-
J. Pharmacol. Exp. Ther. · Aug 2004
Comparative StudyUDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 D85Y genotype and gender are major determinants of oxazepam glucuronidation by human liver.
- Michael H Court, Qin Hao, Soundararajan Krishnaswamy, Tanios Bekaii-Saab, Abdul Al-Rohaimi, Lisa L von Moltke, and David J Greenblatt.
- Comparative and Molecular Pharmacogenetics Laboratory, Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts, USA. michael.court@tufts.edu
- J. Pharmacol. Exp. Ther. 2004 Aug 1; 310 (2): 656-65.
AbstractOxazepam is a commonly used 1,4-benzodiazepine anxiolytic drug that is polymorphically metabolized in humans. However, the molecular basis for this phenomenon is currently unknown. We have previously shown that S-oxazepam glucuronide, the major oxazepam metabolite, is selectively formed by UDP-glucuronosyltransferase (UGT) 2B15, whereas the minor R-oxazepam glucuronide is produced by multiple UGTs other than UGT2B15. Phenotype-genotype studies were conducted using microsomes and DNA prepared from the same set of 54 human livers. Sequencing of the UGT2B15 gene revealed three nonsynonymous polymorphisms, D85Y, T352I, and K523T, with variant allele frequencies of 0.56, 0.02, and 0.40, respectively. D85Y genotype showed a significant effect (p = 0.012) on S-oxazepam glucuronidation with lower median activities in 85Y/Y livers (49 pmol/min/mg protein) compared with 85D/D livers (131 pmol/min/mg), whereas 85D/Y livers were intermediate in activity (65 pmol/min/mg). There was also a significant trend (p = 0.049) for higher S-oxazepam activities in the two 352T/I livers (135 and 210 pmol/min/mg) compared with the remaining 352T/T livers (median, 64 pmol/min/mg). Conversely, K523T genotype had no apparent effect on oxazepam glucuronidation (p > 0.05). Donor gender also significantly influenced S-oxazepam glucuronidation with higher median activities in male (65 pmol/min/mg) compared with female (39 pmol/min/ mg) livers (p = 0.042). R-Oxazepam glucuronidation was not affected by either genotype or gender (p > 0.05). In conclusion, gender and D85Y genotype are identified as major determinants of S-oxazepam glucuronidation by human liver and may explain in part polymorphic oxazepam glucuronidation by human subjects.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.