• Br. J. Dermatol. · Mar 2020

    Recognizing basal cell carcinoma on smartphone-captured digital histopathology images with a deep neural network.

    • Y Q Jiang, J H Xiong, H Y Li, X H Yang, W T Yu, M Gao, X Zhao, Y P Ma, W Zhang, Y F Guan, H Gu, and J F Sun.
    • Department of Dermatopathology, Institute of Dermatology, Peking Union Medical College & Chinese Academy of Medical Sciences, Nanjing, 210042, China.
    • Br. J. Dermatol. 2020 Mar 1; 182 (3): 754-762.

    BackgroundPioneering effort has been made to facilitate the recognition of pathology in malignancies based on whole-slide images (WSIs) through deep learning approaches. It remains unclear whether we can accurately detect and locate basal cell carcinoma (BCC) using smartphone-captured images.ObjectivesTo develop deep neural network frameworks for accurate BCC recognition and segmentation based on smartphone-captured microscopic ocular images (MOIs).MethodsWe collected a total of 8046 MOIs, 6610 of which had binary classification labels and the other 1436 had pixelwise annotations. Meanwhile, 128 WSIs were collected for comparison. Two deep learning frameworks were created. The 'cascade' framework had a classification model for identifying hard cases (images with low prediction confidence) and a segmentation model for further in-depth analysis of the hard cases. The 'segmentation' framework directly segmented and classified all images. Sensitivity, specificity and area under the curve (AUC) were used to evaluate the overall performance of BCC recognition.ResultsThe MOI- and WSI-based models achieved comparable AUCs around 0·95. The 'cascade' framework achieved 0·93 sensitivity and 0·91 specificity. The 'segmentation' framework was more accurate but required more computational resources, achieving 0·97 sensitivity, 0·94 specificity and 0·987 AUC. The runtime of the 'segmentation' framework was 15·3 ± 3·9 s per image, whereas the 'cascade' framework took 4·1 ± 1·4 s. Additionally, the 'segmentation' framework achieved 0·863 mean intersection over union.ConclusionsBased on the accessible MOIs via smartphone photography, we developed two deep learning frameworks for recognizing BCC pathology with high sensitivity and specificity. This work opens a new avenue for automatic BCC diagnosis in different clinical scenarios. What's already known about this topic? The diagnosis of basal cell carcinoma (BCC) is labour intensive due to the large number of images to be examined, especially when consecutive slide reading is needed in Mohs surgery. Deep learning approaches have demonstrated promising results on pathological image-related diagnostic tasks. Previous studies have focused on whole-slide images (WSIs) and leveraged classification on image patches for detecting and localizing breast cancer metastases. What does this study add? Instead of WSIs, microscopic ocular images (MOIs) photographed from microscope eyepieces using smartphone cameras were used to develop neural network models for recognizing BCC automatically. The MOI- and WSI-based models achieved comparable areas under the curve around 0·95. Two deep learning frameworks for recognizing BCC pathology were developed with high sensitivity and specificity. Recognizing BCC through a smartphone could be considered a future clinical choice.© 2019 British Association of Dermatologists.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.