• Encephale · Apr 2017

    Review

    [The cerebellum as a major player in motor disturbances related to Autistic Syndrome Disorders].

    • M Jaber.
    • Inserm U-1084, laboratoire de neurosciences expérimentales et cliniques, LNEC, université de Poitiers, CHU de Poitiers, bâtiment B36, 1, rue Georges-Bonnet, BP 633, TSA 51106, 86022 Poitiers cedex, France. Electronic address: mohamed.jaber@univ-poitiers.fr.
    • Encephale. 2017 Apr 1; 43 (2): 170-175.

    Scientific BackgroundAutism spectrum disorders (ASD) are neurodevelopmental disorders associated with disturbances in communication, social interactions, cognition and affect. ASD are also accompanied by complex movement disorders, including ataxia. A special focus of recent research in this area is made on the striatum and the cerebellum, two structures known not only to control movement but also to be involved in cognitive functions such as memory and language. Dysfunction within the motor system may be associated with abnormal movements in ASD that are translated into ataxia, abnormal pattern of righting, gait sequencing, development of walking, and hand positioning. This line of study may generate new knowledge and understanding of motor symptoms associated with ASD and aims to deliver fresh perspectives for early diagnosis and therapeutic strategies against ASD.Aims Of The ReviewDespite the relative paucity of research in this area (compared to the social, linguistic, and behavioural disturbances in ASD), there is evidence that the frontostriatal motor system and/or the cerebellar motor systems may be the site of dysfunction in ASD. Indeed, the cerebellum seems to be essential in the development of basic social capabilities, communication, repetitive/restrictive behaviors, and motor and cognitive behaviors that are all impaired in ASD. Cerebellar neuropathology including cerebellar hypoplasia and reduced cerebellar Purkinje cell numbers are the most consistent neuropathologies linked to ASD. The functional state of the cerebellum and its impact on brain function in ASD is the focus of this review. This review starts by recapitulating historical findings pointing towards an implication of the cerebellum, and to a lesser extent the basal ganglia structures, in TSA. We then detail the structure/function of the cerebellum at the regional and cellular levels before describing human and animal findings indicating a role of the cerebellum and basal ganglia in ASD.Human And Animal FindingsSeveral studies have attempted to identify the nature of the motor system dysfunction in ASD, and it became apparent that the motor fronto-striatal and cerebellar systems are major sites of dysfunction in this psychiatric illness. Anomalies in these structures have been revealed both at the anatomical and functional levels in human patients as well as in animal models. These models are obtained by manipulation of genes that are often implicated in glutamate transmission, by lesions of brain structures among which the cerebellum, by pharmacological treatment with drugs such as the Valproate or by maternal infections with bacterial membrane extracts of double stranded RNA mimicking a viral infection.ConclusionThe "cognitive approach" has dominated ASD research for three decades and led to the design of interventional strategies, which have yielded satisfactory results. Nevertheless, new approaches and alternative hypotheses on the aetiology and diagnosis of ASD are needed. Research focused on motor rather than psychiatric symptoms may have a greater potential to elucidate the neurobiological basis of ASD.Copyright © 2016 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.