• J. Mol. Med. · Apr 2020

    A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome.

    • Xiufeng Yu, Min Mao, Xia Liu, Tingting Shen, Tingting Li, Hao Yu, Junting Zhang, Xinxin Chen, Xijuan Zhao, and Daling Zhu.
    • College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), 163319, Daqing, People's Republic of China.
    • J. Mol. Med. 2020 Apr 1; 98 (4): 569-583.

    AbstractNecrosis with inflammation plays a crucial role in acute respiratory distress syndrome (ARDS). Receptor-interacting protein 3 (RIPK3) regulates a newly discovered programmed form of necrosis called necroptosis. However, the underlying mechanism of necroptosis in ARDS remains unknown. Thus, the purpose of this study was to examine the possible involvement of RIPK3 in ARDS-associated necroptosis. RIPK3 protein levels were found to be significantly elevated in the plasma and bronchoalveolar lavage fluid of ARDS patients. Next, we utilised a mouse model of severe ARDS induced with high-dose lipopolysaccharide and found that lung injury was mainly due to RIPK3-mixed lineage kinase domain-like pseudokinase (MLKL)-mediated necroptosis and endothelial dysfunction. The activation of RIPK3-MLKL by tumour necrosis factor receptor 1 (TNFR1) and TNFR1-associated death domain protein (TRADD) required catalytically active RIPK1 and the inhibition of Fas-associated protein with death domain (FADD)/caspase-8 catalytic activity. We further showed that the molecular chaperone heat shock protein 90 (Hsp90)/p23, as a novel RIPK3- and MLKL-interacting complex, played an important role in RIP-MLKL-mediated necroptosis, inflammation and endothelial dysfunction in the pulmonary vasculature, which resulted in ARDS. Collectively, the results of our study indicate that necroptosis is an important mechanism of cell death in ARDS and the inhibition of necroptosis may be a therapeutic intervention for ARDS. KEY MESSAGES: Lung injury in high-dose LPS-induced severe ARDS is mainly due to RIP3-MLKL-mediated necroptosis and endothelial dysfunction. Chaperone HSP90/p23 is a novel RIP3- and MLKL-interacting complex in HPAECs. HSP90/p23 is a novel RIP3- and MLKL-interacting complex in RIP-MLKL-mediated necroptosis, inflammation and endothelial dysfunction.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.