• Indian J Ophthalmol · Feb 2020

    Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening.

    • Payal Shah, Divyansh K Mishra, Mahesh P Shanmugam, Bindiya Doshi, Hariprasad Jayaraj, and Rajesh Ramanjulu.
    • Department of Vitreoretina and Ocular Oncology, Sankara Eye Hospital, Bengaluru, Karnataka, India.
    • Indian J Ophthalmol. 2020 Feb 1; 68 (2): 398-405.

    PurposeDeep learning is a newer and advanced subfield in artificial intelligence (AI). The aim of our study is to validate a machine-based algorithm developed based on deep convolutional neural networks as a tool for screening to detect referable diabetic retinopathy (DR).MethodsAn AI algorithm to detect DR was validated at our hospital using an internal dataset consisting of 1,533 macula-centered fundus images collected retrospectively and an external validation set using Methods to Evaluate Segmentation and Indexing Techniques in the field of Retinal Ophthalmology (MESSIDOR) dataset. Images were graded by two retina specialists as any DR, prompt referral (moderate nonproliferative diabetic retinopathy (NPDR) or above or presence of macular edema) and sight-threatening DR/STDR (severe NPDR or above) and compared with AI results. Sensitivity, specificity, and area under curve (AUC) for both internal and external validation sets for any DR detection, prompt referral, and STDR were calculated. Interobserver agreement using kappa value was calculated for both the sets and two out of three agreements for DR grading was considered as ground truth to compare with AI results.ResultsIn the internal validation set, the overall sensitivity and specificity was 99.7% and 98.5% for Any DR detection and 98.9% and 94.84%for Prompt referral respectively. The AUC was 0.991 and 0.969 for any DR detection and prompt referral respectively. The agreement between two observers was 99.5% and 99.2% for any DR detection and prompt referral with a kappa value of 0.94 and 0.96, respectively. In the external validation set (MESSIDOR 1), the overall sensitivity and specificity was 90.4% and 91.0% for any DR detection and 94.7% and 97.4% for prompt referral, respectively. The AUC was. 907 and. 960 for any DR detection and prompt referral, respectively. The agreement between two observers was 98.5% and 97.8% for any DR detection and prompt referral with a kappa value of 0.971 and 0.980, respectively.ConclusionWith increasing diabetic population and growing demand supply gap in trained resources, AI is the future for early identification of DR and reducing blindness. This can revolutionize telescreening in ophthalmology, especially where people do not have access to specialized health care.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.