• Curr. Pharm. Des. · Jan 2014

    Review

    Signaling epicenters: the role of caveolae and caveolins in volatile anesthetic induced cardiac protection.

    • Yousuke T Horikawa, Yasuo M Tsutsumi, Hemal H Patel, and David M Roth.
    • VA Medical Center, San Diego (125) 3350 La Jolla Village Drive, San Diego, CA 92161-5085. droth@ucsd.edu.
    • Curr. Pharm. Des. 2014 Jan 1; 20 (36): 5681-9.

    AbstractCaveolae are flask-like invaginations of the cell surface that have been identified as signaling epicenters. Within these microdomains, caveolins are structural proteins of caveolae, which are able to interact with numerous signaling molecules affecting temporal and spatial dimensions required in cardiac protection. This complex moiety is essential to the mechanisms involved in volatile anesthetics. In this review we will outline a general overview of caveolae and caveolins and their role in protective signaling with a focus on the effects of volatile anesthetics. These recent developments have allowed us to better understand the mechanistic effect of volatile anesthetics and their potential in cardiac protection.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.