• Int. J. Cancer · Aug 2021

    Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer.

    • Sung Hak Lee, In Hye Song, and Hyun-Jong Jang.
    • Department of Hospital Pathology, Seoul St. Mary's Hospital, Seoul, South Korea.
    • Int. J. Cancer. 2021 Aug 1; 149 (3): 728-740.

    AbstractHigh levels of microsatellite instability (MSI-H) occurs in about 15% of sporadic colorectal cancer (CRC) and is an important predictive marker for response to immune checkpoint inhibitors. To test the feasibility of a deep learning (DL)-based classifier as a screening tool for MSI status, we built a fully automated DL-based MSI classifier using pathology whole-slide images (WSIs) of CRCs. On small image patches of The Cancer Genome Atlas (TCGA) CRC WSI dataset, tissue/non-tissue, normal/tumor and MSS/MSI-H classifiers were applied sequentially for the fully automated prediction of the MSI status. The classifiers were also tested on an independent cohort. Furthermore, to test how the expansion of the training data affects the performance of the DL-based classifier, additional classifier trained on both TCGA and external datasets was tested. The areas under the receiver operating characteristic curves were 0.892 and 0.972 for the TCGA and external datasets, respectively, by a classifier trained on both datasets. The performance of the DL-based classifier was much better than that of previously reported histomorphology-based methods. We speculated that about 40% of CRC slides could be screened for MSI status without molecular testing by the DL-based classifier. These results demonstrated that the DL-based method has potential as a screening tool to discriminate molecular alteration in tissue slides.© 2021 Union for International Cancer Control.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.