-
Anesthesia and analgesia · Oct 2010
Comparative StudySpecial article: an optimistic prognosis for the clinical utility of laboratory test data.
- Ming Zheng, Palanikumar Ravindran, Jianmei Wang, Richard H Epstein, David P Chen, Atul J Butte, and Gary Peltz.
- Stanford University, Palo Alto, CA 94304, USA.
- Anesth. Analg. 2010 Oct 1; 111 (4): 1026-35.
AbstractIt is hoped that anesthesiologists and other clinicians will be able to increasingly rely upon laboratory test data to improve the perioperative care of patients. However, it has been suggested that in order for a laboratory test to have clinically useful diagnostic performance characteristics (sensitivity and specificity), its performance must be considerably better than those that have been evaluated in most etiologic or epidemiologic studies. This pessimism about the clinical utility of laboratory tests is based upon the untested assumption that laboratory data are normally distributed within case and control populations. We evaluated the data distribution for 700 commonly ordered laboratory tests, and found that the vast majority (99%) do not have a normal distribution. The deviation from normal was most pronounced at extreme values, which had a large quantitative effect on laboratory test performance. At the sensitivity and specificity values required for diagnostic utility, the minimum required odds ratios for laboratory tests with a nonnormal data distribution were significantly smaller (by orders of magnitude) than for tests with a normal distribution. By evaluating the effect that the data distribution has on laboratory test performance, we have arrived at the more optimistic outlook that it is feasible to produce laboratory tests with diagnostically useful performance characteristics. We also show that moderate errors in the classification of outcome variables (e.g., death vs. survival at a specified end point) have a small impact on test performance, which is of importance for outcomes research that uses anesthesia information management systems. Because these analyses typically seek to identify factors associated with an undesirable outcome, the data distributions of the independent variables need to be considered when interpreting the odds ratios obtained from such investigations.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.