• Int J Nanomed · Jan 2018

    Iron-gold alloy nanoparticles serve as a cornerstone in hyperthermia-mediated controlled drug release for cancer therapy.

    • Yun-Qian Li, Meng Xu, Udesh Dhawan, Wai-Ching Liu, Kou-Ting Wu, Xin-Rui Liu, Chingpo Lin, Gang Zhao, Yu-Chuan Wu, and Ren-Jei Chung.
    • Department of Neurosurgical Oncology, First Hospital, Jilin University, Changchun, People's Republic of China.
    • Int J Nanomed. 2018 Jan 1; 13: 5499-5509.

    IntroductionThe efficacy of a chemotherapy drug in cancer therapy is highly determined by the ability to control the rate and extent of its release in vivo. However, the lack of techniques to accurately control drug release drastically limits the potency of a chemotherapy drug.Materials And MethodsHere, we present a novel strategy to precisely monitor drug release under magnetic stimulation. Methotrexate (MTX), an anticancer drug, was covalently functionalized onto iron-gold alloy magnetic nanoparticles (Fe-Au alloy nanoparticles or NFAs) through 2-aminoethanethiol grafting and the ability of this drug-nanoparticle conjugate (NFA-MTX) in limiting HepG2 (liver carcinoma) cell growth was studied. Well-dispersed NFAs were prepared through pyrolysis.Results And DiscussionTransmission electron microscopy revealed the average nanoparticle size to be 7.22±2.6 nm, while X-ray diffraction showed distinct 2θ peaks for iron and gold, confirming the presence of iron and gold nanoparticles. Inductively coupled plasma mass spectrometry revealed that the amount of NFA-MTX conjugate ingested by HepG2 cancer cells was 1.5 times higher than that ingested by L929 fibroblasts, thereby proving a higher selective ingestion by cancer cells compared to normal cells. Fourier-transform infrared spectroscopy revealed the breakage of Au-S bonds by the heat generated under magnetic field stimulation to release MTX from the NFA-MTX conjugate, triggering a 95% decrease in cellular viability at 100 µg/mL.ConclusionThe ability of NFA-MTX to dissociate under the influence of an applied magnetic field provides a new strategy to induce cancer cell death via hyperthermia. Applications in drug delivery, drug development, and cancer research are expected.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.