• Neuroscientist · Dec 2008

    Review

    Synaptic plasticity from visual cortex to hippocampus: systems integration in spatial information processing.

    • Marian Tsanov and Denise Manahan-Vaughan.
    • International Graduate School of Neuroscience and Medical Faculty, Department of Experimental Neurophysiology, Medical Faculty, Ruhr University Bochum, Germany.
    • Neuroscientist. 2008 Dec 1; 14 (6): 584-97.

    AbstractThe adult cerebral cortex possesses the remarkable ability to change its neuronal connectivity through experience, a phenomenon termed "synaptic plasticity." Synaptic plasticity constitutes a cellular mechanism that is thought to underlie information storage and memory formation in the brain, and represents a use-dependent long-lasting increase or decrease in synaptic strength. Recent findings, that the adult visual cortex undergoes dynamic synaptic plasticity that is driven by active visual experience, suggest that it may be involved in information processing that could contribute to memory formation. The visual cortex provides a crucial sensory input to the hippocampus, and is a key component for the creation of spatial memories. An understanding of how visual cortical neurons respond with synaptic plasticity to visual experience, and whether these responses influence the induction of hippocampal plasticity, is fundamental to our understanding of the neuronal mechanisms and functional consequences of visuospatial information processing. In this review, we summarize recent findings with regard to the expression of dynamic synaptic plasticity in the visual cortex and how this plasticity may influence information processing in the hippocampus.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.