• J Ment Health Policy Econ · Sep 2000

    Risk adjustment for high utilizers of public mental health care.

    • Kanika Kapur, Alexander S. Young, and Dennis Murata.
    • RAND Corporation, 1700 Main Street, Santa Monica, CA 90401, USA.
    • J Ment Health Policy Econ. 2000 Sep 1; 3 (3): 129-137.

    BackgroundPublicly funded mental health systems are increasingly implementing managed care systems, such as capitation, to control costs. Capitated contracts may increase the risk for disenrollment or adverse outcomes among high cost clients with severe mental illness. Risk-adjusted payments to providers are likely to reduce providers' incentives to avoid or under-treat these people. However, most research has focused on Medicare and private populations, and risk adjustment for individuals who are publicly funded and severely mentally ill has received far less attention. AIMS OF THE STUDY: Risk adjustment models for this population can be used to improve contracting for mental health care. Our objective is to develop risk adjustment models for individuals with severe mental illness and assess their performance in predicting future costs. We apply the risk adjustment model to predict costs for the first year of a pilot capitation program for the severely mentally ill that was not risk adjusted. We assess whether risk adjustment could have reduced disenrollment from this program. MethodsThis analysis uses longitudinal administrative data from the County of Los Angeles Department of Mental Health for the fiscal years 1991 to 1994. The sample consists of 1956 clients who have high costs and are severely mentally ill. We estimate several modified two part models of 1993 cost that use 1992 client-based variables such as demographics, living conditions, diagnoses and mental health costs (for 1992 and 1991) to explain the variation in mental health and substance abuse costs. ResultsWe find that the model that incorporates demographic characteristics, diagnostic information and cost data from two previous years explains about 16 percent of the in-sample variation and 10 percent of the out-of-sample variation in costs. A model that excludes prior cost covariates explains only 5 percent of the variation in costs. Despite the relatively low predictive power, we find some evidence that the disenrollment from the pilot capitation initiative input have been reduced if risk adjustment had been used to set capitation rates. DISCUSSION: The evidence suggests that even though risk adjustment techniques have room to improve, they are still likely to be useful for reducing risk selection in capitation programs. Blended payment schemes that combine risk adjustment with risk corridors or partial fee-for-service payments should be explored. IMPLICATIONS FOR HEALTH CARE PROVISION, USE, AND POLICY: Our results suggest that risk adjustment methods, as developed to data, do not have the requisite predictive power to be used as the sole approach to adjusting capitation rates. Risk adjustment is informative and useful; however, payments to providers should not be fully capitated, and may need to involve some degree of risk sharing between providers and public mental health agencies. A blended contract design may further reduce incentives for risk selection by incorporating a partly risk-adjusted capitation payment, without relying completely on the accuracy of risk adjustment models. IMPLICATIONS FOR FURTHER RESEARCH: Risk adjustment models estimated using data sets containing better predictors of rehospitalization and more precise clinical information are likely to have higher predictive power. Further research should also focus on the effect of combination contract designs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…