• Brain Res. Mol. Brain Res. · May 2004

    Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking.

    • Ethan G Hughes, Jamie L Maguire, Melanie T McMinn, Rachael E Scholz, and Margaret L Sutherland.
    • Department of Pharmacology, Neuroscience Program, The George Washington University, Ross Hall Rm 656, 2300 Eye St., NW, Washington, DC 20037, USA.
    • Brain Res. Mol. Brain Res. 2004 May 19; 124 (2): 114-23.

    AbstractLoss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cell death and cellular plasticity responses, we wanted to determine if alterations in glial glutamate transport could contribute to the GFAP null phenotype. To address functional changes in glutamate transport, we measured glutamate uptake in cortical, cerebellar, and hippocampal synaptosomal preparations from age-matched adult wild type and GFAP null mice and demonstrated a 25-30% reduction in the V(max) for d-aspartate uptake in the cortex and hippocampus of GFAP null animals. Western blot analysis of cortical synaptosomal fractions from wild type and GFAP null animals demonstrated that loss of GFAP results in decreases in both astrocytic (EAAT1) and neuronal (EAAT3) glutamate transporter subtypes. Immunohistochemical analysis demonstrated a region-specific modification of neuronal glutamate transporter, EAAT3 trafficking in the GFAP null phenotype. Analysis of primary cortical astrocyte cultures prepared from GFAP null and wild type mice demonstrated that loss of GFAP results in an inability to traffic the glial glutamate transporter, EAAT2, to the surface of the cell following protein kinase A (PKA) stimulation by dibutyryl cAMP. Taken together, these results suggest that the intermediate filament protein, GFAP plays a key role in modulating astrocytic and neuronal glutamate transporter trafficking and function.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…