-
- Xiancai Ma, Fan Zou, Fei Yu, Rong Li, Yaochang Yuan, Yiwen Zhang, Xiantao Zhang, Jieyi Deng, Tao Chen, Zheng Song, Yidan Qiao, Yikang Zhan, Jun Liu, Junsong Zhang, Xu Zhang, Zhilin Peng, Yuzhuang Li, Yingtong Lin, Liting Liang, Guanwen Wang, Yingshi Chen, Qier Chen, Ting Pan, Xin He, and Hui Zhang.
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Engineering Research Center of Gene Vaccine of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Immunity. 2020 Dec 15; 53 (6): 1315-1330.e9.
AbstractVarious vaccine strategies have been proposed in response to the global COVID-19 pandemic, each with unique strategies for eliciting immune responses. Here, we developed nanoparticle vaccines by covalently conjugating the self-assembled 24-mer ferritin to the receptor binding domain (RBD) and/or heptad repeat (HR) subunits of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) spike (S) protein. Compared to monomer vaccines, nanoparticle vaccines elicited more robust neutralizing antibodies and cellular immune responses. RBD and RBD-HR nanoparticle vaccinated hACE2 transgenic mice vaccinated with RBD and/or RBD-HR nanoparticles exhibited reduced viral load in the lungs after SARS-CoV-2 challenge. RBD-HR nanoparticle vaccines also promoted neutralizing antibodies and cellular immune responses against other coronaviruses. The nanoparticle vaccination of rhesus macaques induced neutralizing antibodies, and T and B cell responses prior to boost immunization; these responses persisted for more than three months. RBD- and HR-based nanoparticles thus present a promising vaccination approach against SARS-CoV-2 and other coronaviruses.Copyright © 2020 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.