-
- Han Qing Li, Jia Yin Xu, Yuan Yuan Gao, and Liang Jin.
- State Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, China. Electronic address: hqltcm@163.com.
- Pharmacol. Res. 2018 Nov 1; 137: 135-147.
AbstractRisperidone, one of the second-generation antipsychotics, can efficiently target dopamine D2 and serotonin 5-HT2A receptors. There actually exists significant implication of CYP2D6 genetic polymorphisms on the metabolic kinetics of risperidone, little is known about the extent of CYP2D6 impacting human D2 and 5-HT2A receptor occupancies as well as the clinical efficacy and efficacy in schizophrenia treatment. Here we assessed the influences of CYP2D6 gene polymorphisms on human target occupancies/clinical outcomes and optimized the maintenance therapy of risperidone. A translational framework, previously developed using in vitro and in vivo information in rats, was used as the basis for integrating the effects of CYP2D6 genetic polymorphisms on target occupancies and clinical outcomes. D2 occupancy as a biomarker was related to Positive and Negative Syndrome Scale (PANSS) response and Simpson-Angus Scale (SAS). The population approach was applied to characterize pharmacokinetic and pharmacodynamic (PK/PD) profiles of risperidone. Non-compartment analysis method was performed to calculate the steady state PK/PD parameters of both risperidone and 9-hydroxyrisperidone. The predictive power of this extended translational framework was determined by comparing the predictions of target occupancies and clinical outcomes with the reported human values of risperidone at clinically suggested dosage of 4.0 mg/day. This extended translational framework was adequately used to predict human target occupancies and clinical outcomes. At the steady state, D2 ROs were 75.8%, 79.3% and 86.0% for CYP2D6 poor metabolizer (PM), intermediate metabolizer (IM) and extensive metabolizer (EM), respectively; 5-HT2A ROs were 96.4%, 97.2% and 98.4% for CYP2D6 PM, IM and EM, respectively; PANSS changes from placebo were -5.3, -7.7 and -11.3 for CYP2D6 PM, IM and EM, respectively; SAS changes from placebo were 0.13, 0.15 and 0.18 for CYP2D6 PM, IM and EM, respectively. The predictions of human D2, 5-HT2A RO, PANSS and SAS changes for risperidone with CYP2D6 genetic polymorphisms were well in line with the reported values in clinic. 5.0, 4.0 and 2.5 mg/day were the equivalent dosages of risperidone for CYP2D6 PM, IM and EM, respectively. The optimized maintenance therapy of risperidone was provided through the Three-Step method and the dosage range was 2.5-5.0 mg/day for three CYP2D6 gene groups in the present study. Taken together, our findings demonstrate that this extended translational framework not only differentiates the effects of CYP2D6 genetic polymorphisms on target occupancies and clinical outcomes, but also constitutes a scientific basis to optimize the maintenance therapy of neuropsychiatric patients in clinic.Copyright © 2018 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.