• Med Phys · Jun 2019

    Three-dimensional therapy needle applicator segmentation for ultrasound-guided focal liver ablation.

    • Derek J Gillies, Joseph Awad, Jessica R Rodgers, Chandima Edirisinghe, Derek W Cool, Nirmal Kakani, and Aaron Fenster.
    • Department of Medical Biophysics, Western University, London, ON, N6A 3K7, Canada.
    • Med Phys. 2019 Jun 1; 46 (6): 2646-2658.

    PurposeMinimally invasive procedures, such as microwave ablation, are becoming first-line treatment options for early-stage liver cancer due to lower complication rates and shorter recovery times than conventional surgical techniques. Although these procedures are promising, one reason preventing widespread adoption is inadequate local tumor ablation leading to observations of higher local cancer recurrence compared to conventional procedures. Poor ablation coverage has been associated with two-dimensional (2D) ultrasound (US) guidance of the therapy needle applicators and has stimulated investigation into the use of three-dimensional (3D) US imaging for these procedures. We have developed a supervised 3D US needle applicator segmentation algorithm using a single user input to augment the addition of 3D US to the current focal liver tumor ablation workflow with the goals of identifying and improving needle applicator localization efficiency.MethodsThe algorithm is initialized by creating a spherical search space of line segments around a manually chosen seed point that is selected by a user on the needle applicator visualized in a 3D US image. The most probable trajectory is chosen by maximizing the count and intensity of threshold voxels along a line segment and is filtered using the Otsu method to determine the tip location. Homogeneous tissue mimicking phantom images containing needle applicators were used to optimize the parameters of the algorithm prior to a four-user investigation on retrospective 3D US images of patients who underwent microwave ablation for liver cancer. Trajectory, axis localization, and tip errors were computed based on comparisons to manual segmentations in 3D US images.ResultsSegmentation of needle applicators in ten phantom 3D US images was optimized to median (Q1, Q3) trajectory, axis, and tip errors of 2.1 (1.1, 3.6)°, 1.3 (0.8, 2.1) mm, and 1.3 (0.7, 2.5) mm, respectively, with a mean ± SD segmentation computation time of 0.246 ± 0.007 s. Use of the segmentation method with a 16 in vivo 3D US patient dataset resulted in median (Q1, Q3) trajectory, axis, and tip errors of 4.5 (2.4, 5.2)°, 1.9 (1.7, 2.1) mm, and 5.1 (2.2, 5.9) mm based on all users.ConclusionsSegmentation of needle applicators in 3D US images during minimally invasive liver cancer therapeutic procedures could provide a utility that enables enhanced needle applicator guidance, placement verification, and improved clinical workflow. A semi-automated 3D US needle applicator segmentation algorithm used in vivo demonstrated localization of the visualized trajectory and tip with less than 5° and 5.2 mm errors, respectively, in less than 0.31 s. This offers the ability to assess and adjust needle applicator placements intraoperatively to potentially decrease the observed liver cancer recurrence rates associated with current ablation procedures. Although optimized for deep and oblique angle needle applicator insertions, this proposed workflow has the potential to be altered for a variety of image-guided minimally invasive procedures to improve localization and verification of therapy needle applicators intraoperatively.© 2019 American Association of Physicists in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.