• Plast. Reconstr. Surg. · Dec 2010

    In vivo electrical conductivity across critical nerve gaps using poly(3,4-ethylenedioxythiophene)-coated neural interfaces.

    • Brent M Egeland, Melanie G Urbanchek, Antonio Peramo, Sarah M Richardson-Burns, David C Martin, Daryl R Kipke, William M Kuzon, and Paul S Cederna.
    • Ann Arbor, Mich.; and Newark, Del. From the Department of Surgery, Section of Plastic and Reconstructive Surgery, and the Department of Materials Science and Engineering and Biomedical Engineering, University of Michigan; Biotectix, LLC; and the Department of Material Science and Engineering, University of Delaware.
    • Plast. Reconstr. Surg. 2010 Dec 1; 126 (6): 1865-1873.

    BackgroundBionic limbs require sensitive, durable, and physiologically relevant bidirectional control interfaces. Modern central nervous system interfacing is high risk, low fidelity, and failure prone. Peripheral nervous system interfaces will mitigate this risk and increase fidelity by greatly simplifying signal interpretation and delivery. This study evaluates in vivo relevance of a hybrid peripheral nervous system interface consisting of biological acellular muscle scaffolds made electrically conductive using poly(3,4-ethylenedioxythiophene).MethodsPeripheral nervous system interfaces were tested in vivo using the rat hind-limb conduction-gap model for motor (peroneal) and sensory (sural) nerves. Experimental groups included acellular muscle, iron(III) chloride-treated acellular muscle, and poly(3,4-ethylenedioxythiophene) polymerized on acellular muscle, each compared with intact nerve, autogenous nerve graft, and empty (nonreconstructed) nerve gap controls (n=5 for each). Interface lengths tested included 0, 5, 10, and 20 mm. Immediately following implantation, the interface underwent electrophysiologic characterization in vivo using nerve conduction studies, compound muscle action potentials, and antidromic sensory nerve action potentials.ResultsBoth efferent and afferent electrophysiology demonstrates acellular muscle-poly(3,4-ethylenedioxythiophene) interfaces conduct physiologic action potentials across nerve conduction gaps of at least 20 mm with amplitude and latency not differing from intact nerve or nerve grafts, with the exception of increased velocity in the acellular muscle-poly(3,4-ethylenedioxythiophene) interfaces.ConclusionsNonmetallic, biosynthetic acellular muscle-poly(3,4-ethylenedioxythiophene) peripheral nervous system interfaces both sense and stimulate physiologically relevant efferent and afferent action potentials in vivo. This demonstrates their relevance not only as a nerve-electronic coupling device capable of reaching the long-sought goal of closed-loop neural control of a prosthetic limb, but also in a multitude of other bioelectrical applications.© 2010 American Society of Plastic Surgeons

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.