-
- Joke Bilcke, Marina Antillón, Zoë Pieters, Elise Kuylen, Linda Abboud, Kathleen M Neuzil, Andrew J Pollard, A David Paltiel, and Virginia E Pitzer.
- Centre for Health Economics Research and Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium. Electronic address: joke.bilcke@uantwerpen.be.
- Lancet Infect Dis. 2019 Jul 1; 19 (7): 728-739.
BackgroundTyphoid fever is a major cause of morbidity and mortality in low-income and middle-income countries. In 2017, WHO recommended the programmatic use of typhoid Vi-conjugate vaccine (TCV) in endemic settings, and Gavi, The Vaccine Alliance, has pledged support for vaccine introduction in these countries. Country-level health economic evaluations are now needed to inform decision-making.MethodsIn this modelling study, we compared four strategies: no vaccination, routine immunisation at 9 months, and routine immunisation at 9 months with catch-up campaigns to either age 5 years or 15 years. For each of the 54 countries eligible for Gavi support, output from an age-structured transmission-dynamic model was combined with country-specific treatment and vaccine-related costs, treatment outcomes, and disability weights to estimate the reduction in typhoid burden, identify the strategy that maximised average net benefit (ie, the optimal strategy) across a range of country-specific willingness-to-pay (WTP) values, estimate and investigate the uncertainties surrounding our findings, and identify the epidemiological conditions under which vaccination is optimal.FindingsThe optimal strategy was either no vaccination or TCV immunisation including a catch-up campaign. Routine vaccination with a catch-up campaign to 15 years of age was optimal in 38 countries, assuming a WTP value of at least US$200 per disability-adjusted life-year (DALY) averted, or assuming a WTP value of at least 25% of each country's gross domestic product (GDP) per capita per DALY averted, at a vaccine price of $1·50 per dose (but excluding Gavi's contribution according to each country's transition phase). This vaccination strategy was also optimal in 48 countries assuming a WTP of at least $500 per DALY averted, in 51 with assumed WTP values of at least $1000, in 47 countries assuming a WTP value of at least 50% of GDP per capita per DALY averted, and in 49 assuming a minimum of 100%. Vaccination was likely to be cost-effective in countries with 300 or more typhoid cases per 100 000 person-years. Uncertainty about the probability of hospital admission (and typhoid incidence and mortality) had the greatest influence on the optimal strategy.InterpretationCountries should establish their own WTP threshold and consider routine TCV introduction, including a catch-up campaign when vaccination is optimal on the basis of this threshold. Obtaining improved estimates of the probability of hospital admission would be valuable whenever the optimal strategy is uncertain.FundingBill & Melinda Gates Foundation, Research Foundation-Flanders, and the Belgian-American Education Foundation.Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.