-
Neurobiology of disease · Oct 2019
A Christianson syndrome-linked deletion mutation (Δ287ES288) in SLC9A6 impairs hippocampal neuronal plasticity.
- Andy Y L Gao, Alina Ilie, Philip K Y Chang, John Orlowski, and R Anne McKinney.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada. Electronic address: andy.gao@mail.mcgill.ca.
- Neurobiol. Dis. 2019 Oct 1; 130: 104490.
AbstractChristianson Syndrome is a rare but increasingly diagnosed X-linked intellectual disability disorder that arises from mutations in SLC9A6/NHE6, a pH-regulating transporter that localizes to early and recycling endosomes. We have recently reported that one of the originally identified disease-causing mutations in NHE6 (p.E287-S288del, or ΔES) resulted in a loss of its pH regulatory function. However, the impact of this mutation upon neuronal synapse formation and plasticity is unknown. Here, we investigate the consequences of the ΔES mutant upon mouse hippocampal pyramidal neurons by expressing a fluorescently-labeled ΔES NHE6 construct into primary hippocampal neurons. Neurons expressing the ΔES mutant showed significant reductions in mature dendritic spine density with a concurrent increase in immature filopodia. Furthermore, compared to wild-type (WT), ΔES-containing endosomes are redirected away from early and recycling endosomes toward lysosomes. In parallel, the ΔES mutant reduced the trafficking of glutamatergic AMPA receptors to excitatory synapses and increased their accumulation within lysosomes for potential degradation. Upon long-term potentiation (LTP), neurons expressing ΔES failed to undergo significant structural and functional changes as observed in controls and WT transfectants. Interestingly, synapse density and LTP-induced synaptic remodeling in ΔES-expressing neurons were partially restored by bafilomycin, a vesicular alkalinisation agent, or by leupeptin, an inhibitor of lysosomal proteolytic degradation. Overall, our results demonstrate that the ∆ES mutation attenuates synapse density and structural and functional plasticity in hippocampal neurons. These deficits may be partially due to the mistargeting of AMPA receptors and other cargos to lysosomes, thereby preventing their trafficking during synaptic remodeling. This mechanism may contribute to the cognitive learning deficits observed in patients with Christianson Syndrome and suggests a potential therapeutic strategy for treatment.Copyright © 2019 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.