• Neuroscience letters · Jul 2017

    Suppressed neural complexity during ketamine- and propofol-induced unconsciousness.

    • Jisung Wang, Gyu-Jeong Noh, Byung-Moon Choi, Seung-Woo Ku, Pangyu Joo, Woo-Sung Jung, Seunghwan Kim, and Heonsoo Lee.
    • Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, South Korea.
    • Neurosci. Lett. 2017 Jul 13; 653: 320-325.

    AbstractKetamine and propofol have distinctively different molecular mechanisms of action and neurophysiological features, although both induce loss of consciousness. Therefore, identifying a common feature of ketamine- and propofol-induced unconsciousness would provide insight into the underlying mechanism of losing consciousness. In this study we search for a common feature by applying the concept of type-II complexity, and argue that neural complexity is essential for a brain to maintain consciousness. To test this hypothesis, we show that complexity is suppressed during loss of consciousness induced by ketamine or propofol. We analyzed the randomness (type-I complexity) and complexity (type-II complexity) of electroencephalogram (EEG) signals before and after bolus injection of ketamine or propofol. For the analysis, we use Mean Information Gain (MIG) and Fluctuation Complexity (FC), which are information-theory-based measures that quantify disorder and complexity of dynamics respectively. Both ketamine and propofol reduced the complexity of the EEG signal, but ketamine increased the randomness of the signal and propofol decreased it. The finding supports our claim and suggests EEG complexity as a candidate for a consciousness indicator.Copyright © 2017 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…