• J. Thorac. Cardiovasc. Surg. · Nov 2003

    Comparative Study

    Gene expression profile after cardiopulmonary bypass and cardioplegic arrest.

    • Marc Ruel, Cesario Bianchi, Tanveer A Khan, Shu Xu, John R Liddicoat, Pierre Voisine, Eugenio Araujo, Helen Lyon, Isaac S Kohane, Towia A Libermann, and Frank W Sellke.
    • Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA.
    • J. Thorac. Cardiovasc. Surg. 2003 Nov 1; 126 (5): 1521-30.

    ObjectiveThis study examines the cardiac and peripheral gene expression responses to cardiopulmonary bypass and cardioplegic arrest.MethodsAtrial myocardium and skeletal muscle were harvested from 16 patients who underwent coronary artery bypass grafting before and after cardiopulmonary bypass and cardioplegic arrest. Ten sample pairs were selected for patient similarity, and oligonucleotide microarray analyses of 12,625 genes were performed using matched precardiopulmonary bypass tissues as controls. Array results were validated with Northern blotting, real-time polymerase chain reaction, in situ hybridization, and immunoblotting. Statistical analyses were nonparametric.ResultsMedian durations of cardiopulmonary bypass and cardioplegic arrest were 74 and 60 minutes, respectively. Compared with precardiopulmonary bypass, postcardiopulmonary bypass myocardial tissues revealed 480 up-regulated and 626 down-regulated genes with a threshold P value of.025 or less (signal-to-noise ratio: 3.46); skeletal muscle tissues showed 560 and 348 such genes, respectively (signal-to-noise ratio: 3.04). Up-regulated genes in cardiac tissues included inflammatory and transcription activators FOS; jun B proto-oncogene; nuclear receptor subfamily 4, group A, member 3; MYC; transcription factor-8; endothelial leukocyte adhesion molecule-1; and cysteine-rich 61; apoptotic genes nuclear receptor subfamily 4, group A, member 1 and cyclin-dependent kinase inhibitor 1A; and stress genes dual-specificity phosphatase-1, dual-specificity phosphatase-5, and B-cell translocation gene 2. Up-regulated skeletal muscle genes included interleukin 6; interleukin 8; tumor necrosis factor receptor superfamily, member 11B; nuclear receptor subfamily 4, group A, member 3; transcription factor-8; interleukin 13; jun B proto-oncogene; interleukin 1B; glycoprotein Ib, platelet, alpha polypeptide; and Ras-associated protein RAB27A. Down-regulated genes included haptoglobin and numerous immunoglobulins in the heart, and factor H-related gene 2, protein phosphatase 1, regulatory subunit 3A, and growth differentiation factor-8 in skeletal muscle.ConclusionsBy establishing a profile of the gene-expression responses to cardiopulmonary bypass and cardioplegia, this study allows a better understanding of their effects and provides a framework for the evaluation of new cardiac surgical modalities directly at the genome level.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…