-
- Hau-Tieng Wu, Gregory F Lewis, Maria I Davila, Ingrid Daubechies, and Stephen W Porges.
- Hau-Tieng Wu, University of Toronto, Department of Mathematics, Toronto, Ontario, Canada, E-mail: hauwu@math.toronto.edu.
- Methods Inf Med. 2016 Oct 17; 55 (5): 463-472.
BackgroundWith recent advances in sensor and computer technologies, the ability to monitor peripheral pulse activity is no longer limited to the laboratory and clinic. Now inexpensive sensors, which interface with smartphones or other computer-based devices, are expanding into the consumer market. When appropriate algorithms are applied, these new technologies enable ambulatory monitoring of dynamic physiological responses outside the clinic in a variety of applications including monitoring fatigue, health, workload, fitness, and rehabilitation. Several of these applications rely upon measures derived from peripheral pulse waves measured via contact or non-contact photoplethysmography (PPG). As technologies move from contact to non-contact PPG, there are new challenges. The technology necessary to estimate average heart rate over a few seconds from a noncontact PPG is available. However, a technology to precisely measure instantaneous heat rate (IHR) from non-contact sensors, on a beat-to-beat basis, is more challenging.ObjectivesThe objective of this paper is to develop an algorithm with the ability to accurately monitor IHR from peripheral pulse waves, which provides an opportunity to measure the neural regulation of the heart from the beat-to-beat heart rate pattern (i.e., heart rate variability).MethodsThe adaptive harmonic model is applied to model the contact or non-contact PPG signals, and a new methodology, the Synchrosqueezing Transform (SST), is applied to extract IHR. The body sway rhythm inherited in the non-contact PPG signal is modeled and handled by the notion of wave-shape function.ResultsThe SST optimizes the extraction of IHR from the PPG signals and the technique functions well even during periods of poor signal to noise. We contrast the contact and non-contact indices of PPG derived heart rate with a criterion electrocardiogram (ECG). ECG and PPG signals were monitored in 21 healthy subjects performing tasks with different physical demands. The root mean square error of IHR estimated by SST is significantly better than commonly applied methods such as autoregressive (AR) method. In the walking situation, while AR method fails, SST still provides a reasonably good result.ConclusionsThe SST processed PPG data provided an accurate estimate of the ECG derived IHR and consistently performed better than commonly applied methods such as autoregressive method.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.