-
- Marek Lalli, Matthew Hamilton, Carel Pretorius, Debora Pedrazzoli, Richard G White, and Houben Rein M G J RMGJ Department of Infectious Disease Epidemiology, Keppel Street, WC1E 7HT, London, UK..
- Department of Infectious Disease Epidemiology, Keppel Street, WC1E 7HT, London, UK. Marek.lalli@lshtm.ac.uk.
- Bmc Infect Dis. 2018 Jul 21; 18 (1): 340.
BackgroundIncreasing case notifications is one of the top programmatic priorities of National TB Control Programmes (NTPs). To find more cases, NTPs often need to consider expanding TB case-detection activities to populations with increasingly low prevalence of disease. Together with low-specificity diagnostic algorithms, these strategies can lead to an increasingly high number of false positive diagnoses, which has important adverse consequences.MethodsWe apply TIME, a widely-used country-level model, to quantify the expected impact of different case-finding strategies under two scenarios. In the first scenario, we compare the impact of implementing two different diagnostic algorithms (higher sensitivity only versus higher sensitivity and specificity) to reach programmatic screening targets. In the second scenario, we examine the impact of expanding coverage to a population with a lower prevalence of disease. Finally, we explore the implications of modelling without taking into consideration the screening of healthy individuals. Outcomes considered were changes in notifications, the ratio of additional false positive to true positive diagnoses, the positive predictive value (PPV), and incidence.ResultsIn scenario 1, algorithm A of prolonged cough and GeneXpert yielded fewer additional notifications compared to algorithm B of any symptom and smear microscopy (n = 4.0 K vs 13.8 K), relative to baseline between 2017 and 2025. However, algorithm A resulted in an increase in PPV, averting 2.4 K false positive notifications thus resulting in a more efficient impact on incidence. Scenario 2 demonstrated an absolute decrease of 11% in the PPV as intensified case finding activities expanded into low-prevalence populations without improving diagnostic accuracy, yielding an additional 23 K false positive diagnoses for an additional 1.3 K true positive diagnoses between 2017 and 2025. Modelling the second scenario without taking into account screening amongst healthy individuals overestimated the impact on cases averted by a factor of 6.ConclusionOur findings show that total notifications can be a misleading indicator for TB programme performance, and should be interpreted carefully. When evaluating potential case-finding strategies, NTPs should consider the specificity of diagnostic algorithms and the risk of increasing false-positive diagnoses. Similarly, modelling the impact of case-finding strategies without taking into account potential adverse consequences can overestimate impact and lead to poor strategic decision-making.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.