• IEEE Trans Biomed Eng · Jul 2017

    Algorithmic Principles of Remote PPG.

    • Wenjin Wang, Albertus C den Brinker, Sander Stuijk, and Gerard de Haan.
    • IEEE Trans Biomed Eng. 2017 Jul 1; 64 (7): 1479-1491.

    AbstractThis paper introduces a mathematical model that incorporates the pertinent optical and physiological properties of skin reflections with the objective to increase our understanding of the algorithmic principles behind remote photoplethysmography (rPPG). The model is used to explain the different choices that were made in existing rPPG methods for pulse extraction. The understanding that comes from the model can be used to design robust or application-specific rPPG solutions. We illustrate this by designing an alternative rPPG method, where a projection plane orthogonal to the skin tone is used for pulse extraction. A large benchmark on the various discussed rPPG methods shows that their relative merits can indeed be understood from the proposed model.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…