• Clinical biomechanics · Mar 2011

    The effects of prosthetic ankle dorsiflexion and energy return on below-knee amputee leg loading.

    • Jessica D Ventura, Glenn K Klute, and Richard R Neptune.
    • Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
    • Clin Biomech (Bristol, Avon). 2011 Mar 1; 26 (3): 298-303.

    BackgroundProsthetic devices are intended to return lower limb amputees to their pre-amputation functional status. However, prosthetic devices designed for unilateral below-knee amputees have yet to completely restore the biomechanical functions normally provided by the ankle muscles, leading to gait asymmetries and increased reliance on their intact leg. In an effort to improve amputee gait, energy storage and return feet have been developed that store mechanical energy in elastic structures in early to mid-stance and return it in late stance. However, little is known regarding how ankle compliance and the level of energy return influences walking mechanics. The purpose of this study was to identify the influence of prosthetic ankle dorsiflexion and energy storage and return on leg loading during steady-state walking.MethodsCompliant ankles with different stiffness levels were attached to a Seattle Lightfoot2 in different orientations (forward- and reverse-facing).FindingsThe ankles decreased residual leg vertical ground reaction forces in late stance, increased residual leg propulsive ground reaction force impulses and increased residual leg knee joint extensor moments. The reverse-facing ankles increased residual leg vertical ground reaction forces in early stance, and the compliant forward-facing ankle increased residual leg braking impulses. In contrast to previous studies, increased energy storage and return from compliant ankles did not decrease hip joint powers or the intact leg vertical ground reaction forces.InterpretationThese results provide insight into the relationships between ankle dorsiflexion, energy storage and return, and leg loading, which may lead to more effective prosthetic devices to improve amputee gait.Copyright © 2010 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.