• IEEE Trans Biomed Eng · Jun 1999

    A stochastic model of the electrically stimulated auditory nerve: single-pulse response.

    • I C Bruce, M W White, L S Irlicht, S J O'Leary, S Dynes, E Javel, and G M Clark.
    • Bionic Ear Institute, University of Melbourne, VIC, Australia. ibruce@bme.jhu.edu
    • IEEE Trans Biomed Eng. 1999 Jun 1; 46 (6): 617-29.

    AbstractMost models of neural response to electrical stimulation, such as the Hodgkin-Huxley equations, are deterministic, despite significant physiological evidence for the existence of stochastic activity. For instance, the range of discharge probabilities measured in response to single electrical pulses cannot be explained at all by deterministic models. Furthermore, there is growing evidence that the stochastic component of auditory nerve response to electrical stimulation may be fundamental to functionally significant physiological and psychophysical phenomena. In this paper we present a simple and computationally efficient stochastic model of single-fiber response to single biphasic electrical pulses, based on a deterministic threshold model of action potential generation. Comparisons with physiological data from cat auditory nerve fibers are made, and it is shown that the stochastic model predicts discharge probabilities measured in response to single biphasic pulses more accurately than does the equivalent deterministic model. In addition, physiological data show an increase in stochastic activity with increasing pulse width of anodic/cathodic biphasic pulses, a phenomenon not present for monophasic stimuli. These and other data from the auditory nerve are then used to develop a population model of the total auditory nerve, where each fiber is described by the single-fiber model.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.