-
- Toru Higaki, Yuko Nakamura, Fuminari Tatsugami, Takeshi Nakaura, and Kazuo Awai.
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. higaki@hiroshima-u.ac.jp.
- Jpn J Radiol. 2019 Jan 1; 37 (1): 73-80.
AbstractDeep learning has been developed by computer scientists. Here, we discuss techniques for improving the image quality of diagnostic computed tomography and magnetic resonance imaging with the aid of deep learning. We categorize the techniques for improving the image quality as "noise and artifact reduction", "super resolution" and "image acquisition and reconstruction". For each category, we present and outline the features of some studies.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.