• Cancer Chemother. Pharmacol. · Jul 2012

    Modeling and simulation approaches to evaluate pharmacokinetic sampling contamination from central venous catheters in pediatric pharmacokinetic studies of actinomycin-D: a report from the children's oncology group.

    • Alena Y Z Edwards, Jeffrey M Skolnik, Erin Dombrowsky, Dimple Patel, and Jeffrey S Barrett.
    • Division of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia, Colket Translational Research Building, Room 4012, Philadelphia, PA, USA.
    • Cancer Chemother. Pharmacol. 2012 Jul 1; 70 (1): 83-94.

    BackgroundThe binding of drugs to catheters can be a source variation in dosing chemotherapeutics. Drug contamination from the dosing central venous line (CVL) can impact the reporting of pharmacokinetic (PK) results and analysis. Peripheral venipuncture avoids binding complications from the CVL but dissuades patients from enrolling. Our group has developed a catheter clearing procedure to minimize the extent of contamination so that dosing and sampling from the CVL can ensue, promoting patient willingness to participate in phase I pediatric oncology trials.ObjectivesTo develop a population pharmacokinetic model of actinomycin-D (AMD) in children with cancer incorporating expressions for drug contamination from PK samples obtained via indwelling CVLs and to evaluate the efficiency of a catheter clearing procedure in removing contamination as well as the impact of contamination on PK results.MethodsA dataset of 199 AMD plasma concentration measurements from 36 patients (age 1.6-20.3 years) was analyzed using nonlinear mixed-effects modeling. Quantitative modeling approaches, including baseline contamination model, covariate model, and catheter clearance model, were evaluated to describe catheter contamination. Monte Carlo simulations mimicking a prospective study in children with cancer were performed to assess the performance of the final model and impact of catheter contamination on PK reporting.ResultsThe PK of AMD was best described by a linear 3-compartment model with first-order elimination. A baseline contamination model including a contamination factor proportional to the model-predicted concentration for samples obtained from central catheters was chosen as the most parsimonious and accurate among competing models. The final model parameters were allometrically scaled to a 70 kg person. The estimated mean parameter values were 11 L/h, 5.79, 24.2, 490 L, 17.7, and 42.8 L/h for total clearance, central volume of distribution, peripheral volume 1, peripheral volume 2, inter-compartmental clearance 1, and inter-compartmental clearance 2, respectively. The proportional contamination factor was 19.3 % immediately post-drug administration and decreased at a first-order rate of 0.0932 h(-1). Simulations precisely re-estimated kinetic parameters with catheter contamination adjustment. Large uncertainty and poor estimation were observed when contamination was ignored.ConclusionsDrug contamination from sampling catheter can impact AMD PK results and should be accounted for in the analysis. We provide a framework for evaluating catheter contamination and guidance on adjustment in the PK model.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.