• Int. J. Biol. Macromol. · Jan 2011

    Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.

    • Honglin Chen, Jin Huang, Jiahui Yu, Shiyuan Liu, and Ping Gu.
    • Institutes for Advanced Interdisciplinary Research, East China Normal University, No. 3663, North Zhongshan Rd., Shanghai 200062, PR China.
    • Int. J. Biol. Macromol. 2011 Jan 1; 48 (1): 13-9.

    AbstractThis research is aimed to develop cationic nanofibrous mats with improved cellular adhesion profiles and stability of three-dimensional fibrous structure as potential scaffolds for skin tissue engineering. Firstly, amino-remained chitosan-graft-poly (ɛ-caprolactone) (CS-g-PCL) was synthesized with a facile one-step manner by grafting ɛ-caprolactone oligomers onto the hydroxyl groups of CS via ring-opening polymerization by using methanesulfonic acid as solvent and catalyst. And then, CS-g-PCL/PCL nanofibrous mats were obtained by electrospinning of CS-g-PCL/PCL mixed solution. Scanning electron microscopy (SEM) images showed that the morphologies and diameters of the nanofibers were mainly affected by the weight ratio of CS-g-PCL to PCL. The enrichment of amino groups on the nanofiber surface was confirmed by X-ray photoelectron spectroscopy (XPS). With the increase of CS-g-PCL in CS-g-PCL/PCL nanofiber, the content of amino groups on the nanofiber surface increased, which resulted in the increase of zeta-potential of nanofibers. Studies on cell-scaffold interaction were carried out by culturing mouse fibroblast cells (L929) on CS-g-PCL/PCL nanofibrous mats with various contents of CS-g-PCL by assessing the growth, proliferation and morphologies of cells. The results of MTS assay and SEM observation showed that CS-g-PCL/PCL (2/8) mats with a moderate surface zeta-potential (ζ=3mV) were the best in promoting the cell attachment and proliferation. Toluidine blue staining further confirmed that L929 cells grew well and exhibited a normal morphology on the CS-g-PCL/PCL (2/8) mats. These results suggested the potential utilization of CS-g-PCL/PCL (2/8) nanofibrous mats for skin tissue engineering.Copyright © 2010 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.