• Journal of neurology · Oct 2013

    Cerebral blood flow response to neural activation after acute ischemic stroke: a failure of myogenic regulation?

    • Angela S M Salinet, Thompson G Robinson, and Ronney B Panerai.
    • Department of Cardiovascular Sciences, University of Leicester, Trent Stroke Research Network Office, Victoria Building, Leicester Royal Infirmary, LE1 5WW, Leicester, UK, asms2@le.ac.uk.
    • J. Neurol. 2013 Oct 1; 260 (10): 2588-95.

    AbstractWe tested two hypotheses: (1) neurovascular coupling is impaired after acute ischemic stroke, (2) subcomponent analysis of cerebral blood flow velocity can reveal significant differences between acute ischemic stroke and healthy controls. This was explored through the comparison of nineteen acute ischemic stroke patients with healthy controls. Recordings of cerebral blood flow velocity, blood pressure and end-tidal CO2 were obtained during 60s of passive elbow flexion. Cerebral blood flow velocity changes were decomposed into standardized subcomponents describing the contributions of blood pressure (V BP), resistance area product (V RAP) and critical closing pressure (V CrCP). The passive paradigm led to a bilateral cerebral blood flow velocity increase in both groups, but in acute ischemic stroke the magnitude of change was significantly lower. Blood pressure increases were shown to be an important contributor to cerebral blood flow velocity response throughout the paradigm in both groups, with no significant difference between groups. The V CrCP contribution was not different between groups or hemispheres; its continuous rise during activation indicating a vasodilatory effect. On the other hand, the V RAP contribution showed significant differences (p = 0.03), thus suggesting myogenic impairment in acute ischemic stroke. Cerebral blood flow velocity responses to passive elbow flexion suggest an impairment of neurovascular coupling in acute ischemic stroke. Subcomponent analysis suggests an impairment of the myogenic pathways, giving a greater insight into the different mechanisms contributing to neurovascular coupling. Further research is needed to assess the clinical value of subcomponent analysis of neurovascular coupling and the natural history of such changes following acute ischemic stroke.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.