• Arch. Dermatol. Res. · May 1997

    Epidermal growth factor and temperature regulate keratinocyte differentiation.

    • M Ponec, S Gibbs, A Weerheim, J Kempenaar, A Mulder, and A M Mommaas.
    • Department of Dermatology, Leiden University Hospital, The Netherlands.
    • Arch. Dermatol. Res. 1997 May 1; 289 (6): 317-26.

    AbstractThe limited life-span and irregularities in epidermal differentiation and barrier function that have restricted the utility of presently available skin culture models for pharmacological and toxicological studies indicate that further modifications of culture conditions are required for optimization of these models. In the present study epidermis reconstructed on de-epidermized dermis was used to investigate the effects of temperature and epidermal growth factor (EGF) on epidermal differentiation and lipogenesis. When cultured at 37 degrees C, keratinocytes formed a well-differentiated epidermis whether EGF was present or not. However, the thickness of the epidermis, particularly of the stratum corneum, was higher in the presence of EGF. Both the differentiation-specific protein markers (keratins 1 and 10, involucrin and transglutaminase) and lipid markers (ceramides) were synthesized. EGF-induced increases in triglyceride content caused accumulation of lipid droplets within the stratum corneum which is indicative of a hyperproliferative effect of EGF. In the absence of EGF, a well-differentiated epidermis was generated at 33 degrees C with a morphology showing a higher resemblance to native epidermis than cultures grown at 37 degrees C. The stratum corneum was less compact and with practically no lipid droplets, irregularly shaped keratohyalin granules were abundant in the stratum granulosum, lamellar body extrusion was improved and the number of stratum corneum layers was reduced to normal levels. However, EGF supplementation had a deleterious effect on epidermal morphogenesis and differentiation of cultures grown at 33 degrees C. The epidermis lacked a stratum granulosum and the stratum corneum contained a high number of nuclear remnants. The synthesis of the early specific protein differentiation markers (keratins 1 and 10) was suppressed on both the protein and mRNA levels without significant interference with the synthesis of late differentiation lipid markers, such as ceramides. From this observation it can be concluded that the synthesis of keratins associated with terminal differentiation is profoundly affected by the presence of EGF and is sensitive to temperature and that of ceramides is not. The finding that TGF alpha did not modulate the morphogenesis and synthesis of keratins 1 and 10 in cultures grown at 33 degrees C indicates possible differences between the postreceptor binding processes of these EGF receptor ligands.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…