• Exp Brain Res · Sep 2003

    Plasticity in corticomotor control of the human tongue musculature induced by tongue-task training.

    • Peter Svensson, Antonietta Romaniello, Lars Arendt-Nielsen, and Barry J Sessle.
    • Orofacial Pain Laboratory, Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark. psvensson@odont.au.dk
    • Exp Brain Res. 2003 Sep 1; 152 (1): 42-51.

    AbstractTranscranial magnetic stimulation (TMS) has been used to assess characteristics of the corticomotor control of the jaw muscles, but less is known about the cortical control of the human tongue and its modification by training. The aim of the present study was to determine the effect of training humans in a novel tongue-protrusion task for 1 week on corticomotor excitability as assessed by changes in electromyographic activity elicited in the tongue musculature by TMS, and in the tongue cortical motor map revealed by TMS. Eleven healthy subjects participated. Stimulus-response curves were generated from the motor evoked potentials (MEPs) recorded in the tongue musculature and, from the first dorsal interosseos (FDI) muscle as a control, at three time periods: at baseline, immediately after the 1-week training period, and at 2-weeks follow-up. In addition, the corticomotor representations of the tongue and FDI muscles were mapped on a 1 x 1 cm scalp grid. The tongue-training task required each subject to protrude the tongue onto a force transducer placed in front of the subject, and consisted of a relax-protrude-hold-relax cycle lasting 12.5 s with 1 N as the target at the hold phase. The subjects repeated this task for 60 min every day for 1 week. All subjects reported moderate levels of fatigue in the tongue during the first training day; however, these subjective reports decreased during the week (ANOVA P<0.001), and the subjects showed a progressive increase in their ability to perform the task successfully ( P<0.001). The threshold for evoking MEPs by TMS in the tongue musculature was significantly decreased after the last training day compared with baseline and the 2-weeks follow-up ( P<0.001). The amplitude of the MEPs in the tongue musculature was significantly increased at higher intensities of TMS after the last training day but returned to baseline values at the 2-weeks follow-up (P = 0.005). No significant effect of the training on MEPs in the FDI was observed (P = 0.493). Analysis of the corticomotor topographic maps revealed a significant ( P<0.05) increase in excitability and, hence, the cortical area from which TMS could evoke MEPs in the tongue, although the center of gravity representation for the tongue or FDI muscles remained stable. The present findings suggest that a specific and reversible plasticity of the corticomotor excitability related to tongue muscle control can be induced when humans learn to perform successfully a novel tongue task.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.