-
BMC Pharmacol Toxicol · May 2020
Effects of coal-fired PM2.5 on the expression levels of atherosclerosis-related proteins and the phosphorylation level of MAPK in ApoE-/- mice.
- Siqi Wang, Feifei Wang, Lixin Yang, Qin Li, Yao Huang, Zhiyuan Cheng, Hongqian Chu, Yiming Song, Lanqin Shang, Weidong Hao, and Xuetao Wei.
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.
- BMC Pharmacol Toxicol. 2020 May 8; 21 (1): 34.
BackgroundAir pollution increases the morbidity and mortality of cardiovascular disease (CVD). Atherosclerosis (AS) is the pathological basis of most CVD, and the progression of atherosclerosis and the increase of fragile plaque rupture are the mechanism basis of the relationship between atmospheric particulate pollution and CVD. The aim of the present study was to investigate the effects of coal-fired fine particulate matter (PM2.5) on the expression levels of atherosclerosis-related proteins (von Willebrand factor (vWF), Endothelin-1 (ET-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin, and to explore the role and mechanism of the progression of atherosclerosis induced by coal-fired PM2.5 via the mitogen-activated protein kinase (MAPK) signaling pathways.MethodsDifferent concentrations of PM2.5 were given to apolipoprotein-E knockout (ApoE-/-) mice via intratracheal instillation for 8 weeks. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of vWF, ET-1 in serum of mice. Immunohistochemistry was used to observe the expression and distribution of ICAM-1 and E-selectin in the aorta of mice. Western blot was used to investigate the phosphoylation of proteins relevant to MAPK signaling pathways.ResultsCoal-fired PM2.5 exacerbated atherosclerosis induced by a high-fat diet. Fibrous cap formation, foam cells accumulation, and atherosclerotic lesions were observed in the aortas of PM2.5-treated mice. Coal-fired PM2.5 increased the protein levels of ET-1, ICAM-1, and E-selectin, but there was no significant difference in the vWF levels between the PM2.5-treatment mice and the HFD control mice. Coal-fired PM2.5 promoted the phosphorylation of p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) in aortic tissues of mice.ConclusionCoal-derived PM2.5 exacerbated the formation of atherosclerosis in mice, increased the expression levels of atherosclerosis-related proteins in mice serum, and promoted the phosphorylation of proteins relevant to MAPK signaling pathway. Thus, MAPK signaling pathway may play a role in the atherosclerosis pathogenesis induced by Coal-derived PM2.5.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.