-
Multicenter Study
An interactive nomogram to predict healthcare-associated infections in ICU patients: A multicenter study in GuiZhou Province, China.
- Man Zhang, Huai Yang, Xia Mou, Lu Wang, Min He, Qunling Zhang, Kaiming Wu, Juan Cheng, Wenjuan Wu, Dan Li, Yan Xu, and Jianqian Chao.
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Medical Insurance, School of Public Health, Southeast University, Nanjing, China.
- Plos One. 2019 Jan 1; 14 (7): e0219456.
ObjectiveTo develop and validate an interactive nomogram to predict healthcare-associated infections (HCAIs) in the intensive care unit (ICU).MethodsA multicenter retrospective study was conducted to review 2017 data from six hospitals in Guizhou Province, China. A total of 1,782 ICU inpatients were divided into either a training set (n = 1,189) or a validation set (n = 593). The patients' demographic characteristics, basic clinical features from the previous admission, and their need for bacterial culture during the current admission were extracted from electronic medical records of the hospitals to predict HCAI. Univariate and multivariable analyses were used to identify independent risk factors of HCAI in the training set. The multivariable model's performance was evaluated in both the training set and the validation set, and an interactive nomogram was constructed according to multivariable regression model. Moreover, the interactive nomogram was used to predict the possibility of a patient developing an HCAI based on their prior admission data. Finally, the clinical usefulness of the interactive nomogram was estimated by decision analysis using the entire dataset.ResultsThe nomogram model included factor development (local economic development levels), length of stay (LOS; days of hospital stay), fever (days of persistent fever), diabetes (history of diabetes), cancer (history of cancer) and culture (the need for bacterial culture). The model showed good calibration and discrimination in the training set [area under the curve (AUC), 0.871; 95% confidence interval (CI), 0.848-0.894] and in the validation set (AUC, 0.862; 95% CI, 0.829-0.895). The decision curve demonstrated the clinical usefulness of our interactive nomogram.ConclusionsThe developed interactive nomogram is a simple and practical instrument for quantifying the individual risk of HCAI and promptly identifying high-risk patients.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.