• J Transl Med · May 2018

    Observational Study

    Establishment and validation of a predictive nomogram model for non-small cell lung cancer patients with chronic hepatitis B viral infection.

    • Shulin Chen, Yanzhen Lai, Zhengqiang He, Jianpei Li, Xia He, Rui Shen, Qiuying Ding, Hao Chen, Songguo Peng, and Wanli Liu.
    • State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
    • J Transl Med. 2018 May 4; 16 (1): 116.

    BackgroundThis study aimed to establish an effective predictive nomogram for non-small cell lung cancer (NSCLC) patients with chronic hepatitis B viral (HBV) infection.MethodsThe nomogram was based on a retrospective study of 230 NSCLC patients with chronic HBV infection. The predictive accuracy and discriminative ability of the nomogram were determined by a concordance index (C-index), calibration plot and decision curve analysis and were compared with the current tumor, node, and metastasis (TNM) staging system.ResultsIndependent factors derived from Kaplan-Meier analysis of the primary cohort to predict overall survival (OS) were all assembled into a Cox proportional hazards regression model to build the nomogram model. The final model included age, tumor size, TNM stage, treatment, apolipoprotein A-I, apolipoprotein B, glutamyl transpeptidase and lactate dehydrogenase. The calibration curve for the probability of OS showed that the nomogram-based predictions were in good agreement with the actual observations. The C-index of the model for predicting OS had a superior discrimination power compared with the TNM staging system [0.780 (95% CI 0.733-0.827) vs. 0.693 (95% CI 0.640-0.746), P < 0.01], and the decision curve analyses showed that the nomogram model had a higher overall net benefit than did the TNM stage. Based on the total prognostic scores (TPS) of the nomogram, we further subdivided the study cohort into three groups: low risk (TPS ≤ 13.5), intermediate risk (13.5 < TPS ≤ 20.0) and high risk (TPS > 20.0).ConclusionThe proposed nomogram model resulted in more accurate prognostic prediction for NSCLC patients with chronic HBV infection.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.