• IEEE Trans Biomed Eng · Dec 2007

    A nonlinear Bayesian filtering framework for ECG denoising.

    • Reza Sameni, Mohammad B Shamsollahi, Christian Jutten, and Gari D Clifford.
    • Biomedical Signal and Image Processing Laboratory (BiSIPL), School of Electrical Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran. r_sameni@mehr.sharif.edu
    • IEEE Trans Biomed Eng. 2007 Dec 1; 54 (12): 2172-85.

    AbstractIn this paper, a nonlinear Bayesian filtering framework is proposed for the filtering of single channel noisy electrocardiogram (ECG) recordings. The necessary dynamic models of the ECG are based on a modified nonlinear dynamic model, previously suggested for the generation of a highly realistic synthetic ECG. A modified version of this model is used in several Bayesian filters, including the Extended Kalman Filter, Extended Kalman Smoother, and Unscented Kalman Filter. An automatic parameter selection method is also introduced, to facilitate the adaptation of the model parameters to a vast variety of ECGs. This approach is evaluated on several normal ECGs, by artificially adding white and colored Gaussian noises to visually inspected clean ECG recordings, and studying the SNR and morphology of the filter outputs. The results of the study demonstrate superior results compared with conventional ECG denoising approaches such as bandpass filtering, adaptive filtering, and wavelet denoising, over a wide range of ECG SNRs. The method is also successfully evaluated on real nonstationary muscle artifact. This method may therefore serve as an effective framework for the model-based filtering of noisy ECG recordings.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.