• Int J Med Inform · Aug 2019

    Automated extraction of sudden cardiac death risk factors in hypertrophic cardiomyopathy patients by natural language processing.

    • Sungrim Moon, Sijia Liu, Christopher G Scott, Sujith Samudrala, Mohamed M Abidian, Jeffrey B Geske, Peter A Noseworthy, Jane L Shellum, Rajeev Chaudhry, Steve R Ommen, Rick A Nishimura, Hongfang Liu, and Adelaide M Arruda-Olson.
    • Division of Digital Health Sciences, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
    • Int J Med Inform. 2019 Aug 1; 128: 32-38.

    BackgroundThe management of hypertrophic cardiomyopathy (HCM) patients requires the knowledge of risk factors associated with sudden cardiac death (SCD). SCD risk factors such as syncope and family history of SCD (FH-SCD) as well as family history of HCM (FH-HCM) are documented in electronic health records (EHRs) as clinical narratives. Automated extraction of risk factors from clinical narratives by natural language processing (NLP) may expedite management workflow of HCM patients. The aim of this study was to develop and deploy NLP algorithms for automated extraction of syncope, FH-SCD, and FH-HCM from clinical narratives.Methods And ResultsWe randomly selected 200 patients from the Mayo HCM registry for development (n = 100) and testing (n = 100) of NLP algorithms for extraction of syncope, FH-SCD as well as FH-HCM from clinical narratives of EHRs. The clinical reference standard was manually abstracted by 2 independent annotators. Performance of NLP algorithms was compared to aggregation and summarization of data entries in the HCM registry for syncope, FH-SCD, and FH-HCM. We also compared the NLP algorithms with billing codes for syncope as well as responses to patient survey questions for FH-SCD and FH-HCM. These analyses demonstrated NLP had superior sensitivity (0.96 vs 0.39, p < 0.001) and comparable specificity (0.90 vs 0.92, p = 0.74) and PPV (0.90 vs 0.83, p = 0.37) compared to billing codes for syncope. For FH-SCD, NLP outperformed survey responses for all parameters (sensitivity: 0.91 vs 0.59, p = 0.002; specificity: 0.98 vs 0.50, p < 0.001; PPV: 0.97 vs 0.38, p < 0.001). NLP also achieved superior sensitivity (0.95 vs 0.24, p < 0.001) with comparable specificity (0.95 vs 1.0, p-value not calculable) and positive predictive value (PPV) (0.92 vs 1.0, p = 0.09) compared to survey responses for FH-HCM.ConclusionsAutomated extraction of syncope, FH-SCD and FH-HCM using NLP is feasible and has promise to increase efficiency of workflow for providers managing HCM patients.Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…