• IEEE Trans Med Imaging · Aug 2012

    Statistical shape model-based femur kinematics from biplane fluoroscopy.

    • N Baka, M de Bruijne, T van Walsum, B L Kaptein, J E Giphart, M Schaap, W J Niessen, and B P F Lelieveldt.
    • Department of Medical Informatics, University Medical Center Rotterdam, Rotterdam, The Netherlands. n.baka@erasmusmc.nl
    • IEEE Trans Med Imaging. 2012 Aug 1; 31 (8): 1573-83.

    AbstractStudying joint kinematics is of interest to improve prosthesis design and to characterize postoperative motion. State of the art techniques register bones segmented from prior computed tomography or magnetic resonance scans with X-ray fluoroscopic sequences. Elimination of the prior 3D acquisition could potentially lower costs and radiation dose. Therefore, we propose to substitute the segmented bone surface with a statistical shape model based estimate. A dedicated dynamic reconstruction and tracking algorithm was developed estimating the shape based on all frames, and pose per frame. The algorithm minimizes the difference between the projected bone contour and image edges. To increase robustness, we employ a dynamic prior, image features, and prior knowledge about bone edge appearances. This enables tracking and reconstruction from a single initial pose per sequence. We evaluated our method on the distal femur using eight biplane fluoroscopic drop-landing sequences. The proposed dynamic prior and features increased the convergence rate of the reconstruction from 71% to 91%, using a convergence limit of 3 mm. The achieved root mean square point-to-surface accuracy at the converged frames was 1.48 ± 0.41 mm. The resulting tracking precision was 1-1.5 mm, with the largest errors occurring in the rotation around the femoral shaft (about 2.5° precision).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.