• IEEE Trans Biomed Eng · Apr 2010

    Principal component analysis as a tool for analyzing beat-to-beat changes in ECG features: application to ECG-derived respiration.

    • Philip Langley, Emma J Bowers, and Alan Murray.
    • Cardiovascular Physics and Engineering Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE7 7DN, UK. philip.langley@ncl.ac.uk
    • IEEE Trans Biomed Eng. 2010 Apr 1; 57 (4): 821-9.

    AbstractAn algorithm for analyzing changes in ECG morphology based on principal component analysis (PCA) is presented and applied to the derivation of surrogate respiratory signals from single-lead ECGs. The respiratory-induced variability of ECG features, P waves, QRS complexes, and T waves are described by the PCA. We assessed which ECG features and which principal components yielded the best surrogate for the respiratory signal. Twenty subjects performed controlled breathing for 180 s at 4, 6, 8, 10, 12, and 14 breaths per minute and normal breathing. ECG and breathing signals were recorded. Respiration was derived from the ECG by three algorithms: the PCA-based algorithm and two established algorithms, based on RR intervals and QRS amplitudes. ECG-derived respiration was compared to the recorded breathing signal by magnitude squared coherence and cross-correlation. The top ranking algorithm for both coherence and correlation was the PCA algorithm applied to QRS complexes. Coherence and correlation were significantly larger for this algorithm than the RR algorithm(p < 0.05 and p < 0.0001, respectively) but were not significantly different from the amplitude algorithm. PCA provides a novel algorithm for analysis of both respiratory and nonrespiratory related beat-to-beat changes in different ECG features.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.