• Am J Sports Med · Apr 2012

    In vivo analysis of the isolated posterior cruciate ligament-deficient knee during functional activities.

    • Kanu Goyal, Scott Tashman, Joon Ho Wang, Kang Li, Xudong Zhang, and Christopher Harner.
    • Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
    • Am J Sports Med. 2012 Apr 1; 40 (4): 777-85.

    BackgroundMost patients with isolated posterior cruciate ligament (PCL) injuries have minimal symptoms, and nonoperative treatment is recommended. However, over time, these patients can develop significant degenerative changes in their knees. Historically, PCL laxity is graded by nonweightbearing anteroposterior measuring techniques that do not reproduce the true, dynamic weightbearing conditions in the injured knee. The purpose of this study was to determine the patholaxity in patients with isolated PCL deficiency during functional weightbearing activities (running, walking, and stair ascent).HypothesisPatients with unilateral, isolated PCL deficiency will demonstrate dynamic anteroposterior and rotational instability in their affected knees during functional activities of level running and stair ascent compared with their unaffected, contralateral knees.Study DesignControlled laboratory study.MethodsNine asymptomatic patients with isolated grade II PCL injury underwent Dynamic Stereo X-Ray (DSX) of both knees during level running and stair ascent. Three-dimensional reconstructions of the patients' bilateral distal femurs and proximal tibias were created from high-resolution computed tomography (CT) scans. Three-dimensional joint kinematics were determined using a model-based tracking approach to align the radiographic images with CT-derived bone models. The resulting tibiofemoral rotations and translations for the PCL-deficient and PCL-intact knees were then compared.ResultsDuring level running, the tibia of the PCL-deficient knee was approximately 2 mm posteriorly subluxated and had an anterior velocity relative to the femur approximately 40 mm/s greater than the contralateral, uninjured knee; however, this was only during the swing phase. No significant differences were found during the stance phase of running. During stair ascent, the tibia of the PCL-deficient knee was approximately 4 mm posteriorly subluxated compared with the intact limb during the terminal swing phase and early stance phase. Between foot strike and the time of peak ground-reaction force (GRF), the tibia of the PCL-deficient knee translated anteriorly relative to the femur with velocities 3 to 4 times greater than in the intact limb. Level walking was also evaluated in 3 patients, but no differences were seen, and it was not tested in the remaining 6 patients.ConclusionChanges in knee kinematics due to isolated PCL injuries were highly activity dependent. During running, small differences were identified only during the swing phase when the knee was unloaded. However, during stair ascent, significant differences extended from the late swing into early stance phase. During the swing phase of stair ascent, the tibia in the PCL-deficient joint subluxated posteriorly. Then, as load was transferred to the ascending limb, the tibia reduced anteriorly with high velocity relative to the femur. The resulting shear motion may expose the loaded joint to abnormal and potentially damaging forces.Clinical RelevanceDuring functional activities, patients with isolated PCL injuries experience significant knee instability that cannot be identified by standard nonweightbearing static laxity measurements. The finding that different activities create different degrees of instability may have important implications for rehabilitation and activity limitations for PCL-deficient individuals.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…