-
- Annette Kettler, Michael Bushelow, and Hans-Joachim Wilke.
- SpineServ GmbH & Co KG, Soeflinger Strasse 100, 89077 Ulm, Germany. annette.kettler@spineserv.de
- Eur Spine J. 2012 Jun 1;21 Suppl 5:S709-16.
AbstractPre-clinical wear testing of intervertebral disc prostheses is commonly carried out according to ISO 18192-1. Ten million multiaxial loading cycles are applied at a frequency of 1 Hz. At this frequency, testing takes about 4 months. Testing at higher frequencies would therefore be desirable. ISO 18192-1 also offers testing at 2 Hz; however, it says the impact on the implant material behaviour as well as on the accuracy of the test machine shall be investigated by the user. Since such data are not available so far, the aim of this study was to carry out comparative wear tests at 1 and 2 Hz. Seven Prodisc-L lumbar disc prostheses were tested. After a pre-soak period, the implants were placed in specimen cups filled with calf serum, mounted to a Spine Wear Simulator and loaded according to ISO 18192-1. Testing was carried out at a temperature of 37 ± 2 °C. Four million loading cycles were applied at 1 Hz and eight million at 2 Hz in an alternating sequence. Each time after 12 days of testing the implants were removed to measure the weight and the height of the polyethylene cores. Then, the test serum was exchanged and the implants were remounted to the testing machine. The mean wear rate was 5.6 ± 2.3 mg per million cycles at 1 Hz and 7.7 ± 1.6 mg per million cycles at 2 Hz during the first six million loading cycles (p < 0.05) and 2.0 ± 0.6 and 4.1 ± 0.7 mg per million cycles during the second six million cycles (p < 0.05). Similarly, the mean heightloss was also smaller at 1 Hz than at 2 Hz (p < 0.05) with -0.02 ± 0.02 mm versus -0.04 ± 0.02 mm per million cycles during the first half of testing and -0.01 ± 0.01 versus -0.02 ± 0.01 mm per million cycles during the second half. The accuracy of the test machine was within the limits described by ISO 18192-1 at both frequencies. The results showed that the wear rate was higher at the beginning than at the end of testing. Also, the results indicated that testing at 2 Hz increases the wear rate compared with 1 Hz in case of a polyethylene-on-metal implant design. In the absence of retrieval studies it is difficult to decide which rate results in a more physiological wear pattern. However, a loading frequency of 1 Hz is probably closer to physiology than 2 Hz since the loading amplitudes prescribed by ISO 18192-1 are high. They rather represent movements like tying shoes or standing up from a chair than walking or sitting. The authors therefore suggest testing at 1 Hz.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.