• Eur Spine J · Jun 2012

    In silico evaluation of a new composite disc substitute with a L3-L5 lumbar spine finite element model.

    • Jérôme Noailly, Luigi Ambrosio, K Elizabeth Tanner, Josep A Planell, and Damien Lacroix.
    • Institute for Bioengineering of Catalonia Biomechanics and Mechanobiology, 4 Torre I, Planta 10, 08028 Barcelona, Spain. jnoailly@ibecbarcelona.eu
    • Eur Spine J. 2012 Jun 1;21 Suppl 5:S675-87.

    AbstractWhen the intervertebral disc is removed to relieve chronic pain, subsequent segment stabilization should restore the functional mechanics of the native disc. Because of partially constrained motions and the lack of intrinsic rotational stiffness ball-on-socket implants present many disadvantages. Composite disc substitutes mimicking healthy disc structures should be able to assume the role expected for a disc substitute with fewer restrictions than ball-on-socket implants. A biomimetic composite disc prototype including artificial nucleus fibre-reinforced annulus and endplates was modelled as an L4-L5 disc substitute within a L3-L5 lumbar spine finite element model. Different device updates, i.e. changes of material properties fibre distributions and volume fractions and nucleus placements were proposed. Load- and displacement-controlled rotations were simulated with and without body weight applied. The original prototype reduced greatly the flexibility of the treated segment with significant adjacent level effects under displacement-controlled or hybrid rotations. Device updates allowed restoring large part of the global axial and sagittal rotational flexibility predicted with the intact model. Material properties played a major role, but some other updates were identified to potentially tune the device behaviour against specific motions. All device versions altered the coupled intersegmental shear deformations affecting facet joint contact through contact area displacements. Loads in the bony endplates adjacent to the implants increased as the implant stiffness decreased but did not appear to be a strong limitation for the implant biomechanical and mechanobiological functionality. In conclusion, numerical results given by biomimetic composite disc substitutes were encouraging with greater potential than that offered by ball-on-socket implants.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.