• J. Cell. Mol. Med. · Aug 2016

    The role of TGF-β1/Smad2/3 pathway in platelet-rich plasma in retarding intervertebral disc degeneration.

    • Huilin Yang, Chenxi Yuan, Chunshen Wu, Jiale Qian, Qing Shi, Xuefeng Li, Xuesong Zhu, and Jun Zou.
    • Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
    • J. Cell. Mol. Med. 2016 Aug 1; 20 (8): 1542-9.

    AbstractRecent studies have suggested that platelet-rich plasma (PRP) injections are an effective way to retard intervertebral disc degeneration, but the mechanism of action is unclear. Activated platelets release some growth factors, such as transforming growth factor-β1 (TGF-β1), which positively modulate the extracellular matrix of nucleus pulposus cells. The purpose of this study was to explore the mechanism underlying the PRP-mediated inhibition of intervertebral disc degeneration. In an in vitro study, we found that the proliferation of nucleus pulposus cells was greatly enhanced with 2.5% PRP treatment. The TGF-β1 concentration was much higher after PRP treatment. PRP administration effectively increased the collagen II, aggrecan and sox-9 mRNA levels and decreased collagen X levels. However, Western blotting demonstrated that specifically inhibiting TGF-β1 signalling could significantly prevent nucleus pulpous cellular expression of Smad2/3 and matrix protein. In a rabbit study, magnetic resonance imaging revealed significant recovery signal intensity in the intervertebral discs of the PRP injection group compared with the very low signal intensity in the control groups. Histologically, the PRP plus inhibitor injection group had significantly lower expression levels of Smad2/3 and collagen II than the PRP group. These results demonstrated that a high TGF-β1 content in the platelets retarded disc degeneration in vitro and in vivo. Inhibiting the TGF-β1/Smad2/3 pathway could prevent this recovery by inactivating Smad2/3 and down-regulating the extracellular matrix. Therefore, the TGF-β1/Smad2/3 pathway might play a critical role in the ability of PRP to retard intervertebral disc degeneration.© 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…