-
Anesthesia and analgesia · Aug 2021
Comparative StudyPrediction of Prolonged Opioid Use After Surgery in Adolescents: Insights From Machine Learning.
- Andrew Ward, Trisha Jani, Elizabeth De Souza, David Scheinker, Nicholas Bambos, and T Anthony Anderson.
- From the Department of Electrical Engineering, Stanford University, Stanford, California.
- Anesth. Analg. 2021 Aug 1; 133 (2): 304-313.
BackgroundLong-term opioid use has negative health care consequences. Patients who undergo surgery are at risk for prolonged opioid use after surgery (POUS). While risk factors have been previously identified, no methods currently exist to determine higher-risk patients. We assessed the ability of a variety of machine-learning algorithms to predict adolescents at risk of POUS and to identify factors associated with this risk.MethodsA retrospective cohort study was conducted using a national insurance claims database of adolescents aged 12-21 years who underwent 1 of 1297 surgeries, with general anesthesia, from January 1, 2011 to December 30, 2017. Logistic regression with an L2 penalty and with a logistic regression with an L1 lasso (Lasso) penalty, random forests, gradient boosting machines, and extreme gradient boosted models were trained using patient and provider characteristics to predict POUS (≥1 opioid prescription fill within 90-180 days after surgery) risk. Predictive capabilities were assessed using the area under the receiver-operating characteristic curve (AUC)/C-statistic, mean average precision (MAP); individual decision thresholds were compared using sensitivity, specificity, Youden Index, F1 score, and number needed to evaluate. The variables most strongly associated with POUS risk were identified using permutation importance.ResultsOf 186,493 eligible patient surgical visits, 8410 (4.51%) had POUS. The top-performing algorithm achieved an overall AUC of 0.711 (95% confidence interval [CI], 0.699-0.723) and significantly higher AUCs for certain surgeries (eg, 0.823 for spinal fusion surgery and 0.812 for dental surgery). The variables with the strongest association with POUS were the days' supply of opioids and oral morphine milligram equivalents of opioids in the year before surgery.ConclusionsMachine-learning models to predict POUS risk among adolescents show modest to strong results for different surgeries and reveal variables associated with higher risk. These results may inform health care system-specific identification of patients at higher risk for POUS and drive development of preventative measures.Copyright © 2021 International Anesthesia Research Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.