• Radiology · Jan 2017

    Lung Adenocarcinoma: Predictive Value of KRAS Mutation Status in Assessing Local Recurrence in Patients Undergoing Image-guided Ablation.

    • Etay Ziv, Joseph P Erinjeri, Hooman Yarmohammadi, F Edward Boas, Elena N Petre, Song Gao, Waleed Shady, Constantinos T Sofocleous, David R Jones, Charles M Rudin, and Stephen B Solomon.
    • From the Interventional Radiology Service, Department of Radiology (E.Z., J.P.E., H.Y., F.E.B., E.N.P., S.G., W.S., C.T.S., S.B.S.), Thoracic Service, Department of Surgery (D.R.J.), and Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine (C.M.R.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Howard-118, New York, NY 10065; and the Interventional Therapy Department, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital and Institute, Beijing, China (S.G.).
    • Radiology. 2017 Jan 1; 282 (1): 251-258.

    AbstractPurpose To establish the relationship between KRAS mutation status and local recurrence after image-guided ablation of lung adenocarcinoma. Materials and Methods This study consisted of a HIPAA-compliant institutional review board-approved retrospective review of 56 primary lung adenocarcinomas in 54 patients (24 men, 30 women; median age, 72 years; range, 54-87 years) treated with percutaneous image-guided ablation and with available genetic mutational analysis. KRAS mutation status and additional clinical and technical variables-Eastern Cooperative Oncology Group (ECOG) status, smoking history, stage at diagnosis, status (new primary or not), history of radiation, history of surgery, prior systemic treatment, modality of ablation, size of nodule, ablation margin, and presence of ground-glass appearance-were recorded and evaluated in relation to time to local recurrence, which was calculated from the time of ablation to the first radiographic evidence of recurrence. Predictors of outcome were identified by using a proportional hazards model for both univariate and multivariate analysis, with death as a competing risk. Results Technical success was 100%. Of the 56 ablated tumors, 37 (66%) were wild type for KRAS and 19 (34%) were KRAS mutants. The 1-year and 3-year cumulative incidences of recurrence were 20% and 35% for wild-type KRAS compared with 40% and 63% for KRAS mutant tumors. KRAS mutation status was a significant predictor of local recurrence at both univariate (P = .05; subdistribution hazard ratio [sHR], 2.32) and multivariate (P = .006; sHR, 3.75) analysis. At multivariate analysis, size (P = .026; sHR, 2.54) and ECOG status (P = .012; sHR, 2.23) were also independent significant predictors, whereas minimum margin (P = .066) was not. Conclusion The results of this study show that there is a relationship between KRAS mutation status and local recurrence after image-guided ablation of lung adenocarcinoma. Specifically, KRAS mutation status of the ablated lesion is a significant predictor of time to local recurrence, independent of size and margin. © RSNA, 2016.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…